Skip to main content

Boolean Valued Analysis: Background and Results

  • Conference paper
  • First Online:
Operator Theory and Differential Equations

Part of the book series: Trends in Mathematics ((TM))

  • 681 Accesses

Abstract

The paper provides a brief overview of the origins, methods and results of Boolean valued analysis. Boolean valued representations of some mathematical structures and mappings are given in tabular form. A list of some problems arising outside the theory of Boolean valued models, but solved using the Boolean valued approach, is given. The relationship between the Kantorovich’s heuristic principle and the Boolean valued transfer principle is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 84.99
Price excludes VAT (USA)
Softcover Book
USD 109.99
Price excludes VAT (USA)
Hardcover Book
USD 109.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A K-space or a Kantorovich space is a Dedekind complete vector lattice. An extended K-space is a universally complete vector lattice, cp. [4] and [104].

  2. 2.

    The base of a vector lattice is the inclusion ordered set of all of its bands (that forms a complete Boolean algebra) [36, 104].

  3. 3.

    Earlier G. Saks [88] without assumption of existence of inaccessible cardinal proved that the statement “The Lebesgue measure on \(\mathbb {R}\) can be extended to the σ-additive invariant measure defined on all subsets of \(\mathbb {R}\)” is consistent with ZF + DC.

  4. 4.

    H: Every order complete order dense linearly ordered set having no first or last element is order isomorphic to the ordered set of reals \(\mathbb {R}\), provided that every collection of mutually disjoint non-empty open intervals in it is countable.

  5. 5.

    NDH: For each compact space X, each homomorphism from \(C(X,\mathbb {C})\) into a Banach algebra is continuous.

References

  1. Abasov, N.M., Kusraev, A.G.: Cyclical compactification and continuous vector functions. Siberian Math. J. 6(1), 17–22 (1987)

    Google Scholar 

  2. Akilov, G.P., Kolesnikov, E.V., Kusraev, A.G.: The Lebesgue extension of a positive operator. Dokl. Akad. Nauk SSSR, 298(3), 521–524 (1988)

    MathSciNet  MATH  Google Scholar 

  3. Akilov, G.P., Kolesnikov, E.V., Kusraev, A.G.: On the order continuous extension of a positive operator. Siberian Math. J. 29(5), 24–35 (1988)

    MathSciNet  MATH  Google Scholar 

  4. Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Academic Press, New York (1985)

    MATH  Google Scholar 

  5. Arzikulov, F.N.: On abstract JW-algebras. Siberian Math. J. 39(1), 20–27 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bell, J.L.: Boolean-Valued Models and Independence Proofs in Set Theory. Clarendon Press, New York (1985)

    MATH  Google Scholar 

  7. Bourbaki, N.: Elements de Mathematique, Algebre Commutative: Valuations. In: Fasc. XXVII. Actualites Science Industrial, Paris, Hermann, vol. 1290 (1962)

    Google Scholar 

  8. Cartwright, D.I.: Extension of positive operators between Banach lattices. Mem. Am. Math. Soc. 164, 1–48 (1975)

    MathSciNet  Google Scholar 

  9. Chupin, H.A.: On problem 18 in Goodearl’s book “Von Neumann regular rings”. Siberian Math. J. 32(1), 161–167 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dales, H., Woodin, W.: An Introduction to Independence for Analysts. Cambridge University, Cambridge (1987)

    Book  MATH  Google Scholar 

  11. Fremlin D.H.: Measure Theory, vol. 2. Broad Foundations, Torres Fremlin, Colchester (2001)

    Google Scholar 

  12. Goodearl, K.R.: Von Neumann Regular Rings. Krieger Publication Company, Malabar (1991)

    MATH  Google Scholar 

  13. Gordon, E.I.: Real numbers in Boolean-valued models of set theory and K-spaces. Dokl. Akad. Nauk SSSR 237(4), 773–775 (1977)

    MathSciNet  Google Scholar 

  14. Gordon, E.I.: Measurable Functions and Lebesgue integral in Boolean Valued Models of Set Theory over a Measure Algebra, vol. VINITI, pp. 291–80. Lenin Moscow State Pedagogical Institute, Moscow (1979, Russian)

    Google Scholar 

  15. Gordon, E.I.: Stability of Horn formulas with respect to transition algebras of Boolean measures on locally compact fields, vol. VINITI, pp. 1243–1281. Lenin Moscow State Pedagogical Institute, Moscow (1980, Russian)

    Google Scholar 

  16. Gordon, E.I.: On the existence of Haar measure in σ-compact groups, vol. VINITI, pp. 1243–81. Lenin Moscow State Pedagogical Institute, Moscow (1980, Russian)

    Google Scholar 

  17. Gordon, E.I.: K-spaces in Boolean-valued models of set theory. Dokl. Akad. Nauk SSSR 258(4), 777–780 (1981)

    MathSciNet  Google Scholar 

  18. Gordon, E.I.: To the theorems of identity preservation in K-spaces. Sibirsk. Mat. Zh. 23(5), 55–65 (1982)

    MathSciNet  Google Scholar 

  19. Gordon, E.I.: Rationally Complete Semiprime Commutative Rings in Boolean Valued Models of Set Theory, vol. VINITI, pp. 3286–83. State University, Gor’kiı̆ (1983, Russian)

    Google Scholar 

  20. Gordon, E.I.: Strongly Unital Injective Modules as Linear Spaces in Boolean Valued Models of Set Theory, vol. VINITI, pp. 770–85. State University, Gor’kiı̆ (1984, Russian)

    Google Scholar 

  21. Gordon, E.I.: Elements of Boolean Valued Analysis. State University, Gor’kiı̆ (1991, Russian)

    Google Scholar 

  22. Gordon, E.I., Lyubetskiı̆, V.A.: Boolean extensions of uniform structures, vol. VINITI, pp. 711–80. Lenin Moscow State Pedagogical Institute, Moscow (1980, Russian)

    Google Scholar 

  23. Gordon, E.I., Lyubetskiı̆, V.A.: Some applications of nonstandard analysis in the theory of Boolean valued measures. Dokl. Akad. Nauk SSSR 256(5), 1037–1041 (1981)

    Google Scholar 

  24. Gordon, E.I., Lyubetskiı̆, V.A.: Boolean extensions of uniform structures. In: Studies on Non-classical Logics and Formal Systems, Moscow, Nauka, pp. 82–153 (1983)

    Google Scholar 

  25. Grothendieck, A.: Une caracterisation vectorielle-metrique des espaces L 1. Canad. J. Math. 4, 552–561 (1955)

    Article  MATH  Google Scholar 

  26. Gutman, A.E.: Locally one-dimensional K-spaces and σ-distributive Boolean algebras. Siberian Adv. Math. 5(2), 99–121 (1995)

    MathSciNet  Google Scholar 

  27. Hoffman-Jørgenson, J.: Vector measures. Math. Scand. 28(1), 5–32 (1971)

    Article  MathSciNet  Google Scholar 

  28. Ioffe, A.D., Levin, V.L.: Subdifferentials of convex functions. Proc. Moscow Math. 26, 3–72 (1972)

    MathSciNet  Google Scholar 

  29. Jech, T.J.: Non-provability of Souslins Hypothesis. Comment. Math. Universitatis Caroline 8(1), 291–305 (1967)

    MathSciNet  MATH  Google Scholar 

  30. Jech, T.J.: Abstract theory of abelian operator algebras: an application of forcing. Trans. Am. Math. Soc. 289(1), 133–162 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jech, T.J.: First order theory of complete Stonean algebras (Boolean-valued real and complex numbers)s. Canad. Math. Bull. 30(4), 385–392 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jech, T.J.: Boolean-linear spaces. Adv. Math. 81(2), 117–197 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jech, T.J.: Lectures in Set Theory with Particular Emphasis on the Method of Forcing. Springer, Berlin (1971). (Set Theory. Springer, Berlin (1997))

    Book  MATH  Google Scholar 

  34. Kanovey, V.G., Lyubetskiı̆, V.A.: Problems of set theoretic nonstandard analysis. Uspekhi Mat. Nauk 62(1:373), 51–122 (2007)

    Google Scholar 

  35. Kantorovich, L.V.: On semiordered linear spaces and their applications to the theory of linear operations. Dokl. Akad. Nauk SSSR. 4(1–2), 11–14 (1935)

    Google Scholar 

  36. Kantorovich, L.V., Vulikh, B.Z., Pinsker A.G.: Functional Analysis in Semiordered Spaces. Moscow–Leningrad, Gostekhizdat (1950, in Russian)

    Google Scholar 

  37. Kaplansky, I.: Projections in Banach algebras. Ann. of Math. 53, 235–249 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kaplansky, I.: Modules over operator algebras. Am. J. Math. 75(4), 839–858 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kusraev, A.G.: Boolean valued analysis of duality between universally complete modules. Dokl. Akad. Nauk SSSR 267(5), 1049–1052 (1982)

    MathSciNet  Google Scholar 

  40. Kusraev, A.G.: Order continuous functionals in Boolean valued models of set theory. Siberian Math. J. 25(1), 57–65 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kusraev, A.G.: On Banach-Kantorovich spaces. Sibirsk. Mat. Zh. 26(2), 119–126 (1985)

    MathSciNet  Google Scholar 

  42. Kusraev, A.G.: Linear operators in lattice-normed spaces. In: Studies on geometry in the large and mathematical analysis. Proceeding of the Sobolev Institute Mathematical, Novosibirsk, vol. 9, pp. 84–123 (1987, in Russian)

    Google Scholar 

  43. Kusraev, A.G.: Boolean valued analysis and JB-algebras. Sibirsk. Mat. Zh. 35(1), 124–134 (1994)

    MathSciNet  MATH  Google Scholar 

  44. Kusraev, A.G.: On the structure of type I2 AJW-algebras. Siberian Math. J. 40(4), 905–917 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kusraev, A.G.: Dominated Operators. Kluwer, Dordrecht (2000)

    Book  MATH  Google Scholar 

  46. Kusraev, A.G.: On band preserving operators. Vladikavkaz Math. J. 6(3), 47–58 (2004)

    MathSciNet  MATH  Google Scholar 

  47. Kusraev, A.G.: Automorphisms and derivations in extended complex f-algebras. Siberian Math. J. 47(1), 97–107 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kusraev, A.G.: Boolean valued analysis of normed Jordan algebras. In: Kusraev, A.G., Tikhomirov, V.M. (eds.) Studies in Functional Analysis and Its Applications. Nauka, Moscow (2006)

    Google Scholar 

  49. Kusraev, A.G.: Boolean Valued Analysis Approach to Injective Banach Lattices, 28 p. Southern Mathematical Institute VSC RAS, Vladikavkaz (2011). Preprint no. 1

    Google Scholar 

  50. Kusraev, A.G.: Boolean valued analysis and injective Banach lattices. Dokl. Math., 85(3), 341–343 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kusraev, A.G.: Kantorovich’s principle in action: AW -modules and injective Banach lattices. Vladikavkaz Math. J. 14(1), 67–74 (2012)

    MathSciNet  MATH  Google Scholar 

  52. Kusraev, A.G.: Classification of injective Banach lattices. Dokl. Math. 88(3), 1–4 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. Kusraev, A.G.: Injective Banach lattices: A survey. Eurasian Math. J. 5(3), 58–79 (2014)

    MathSciNet  MATH  Google Scholar 

  54. Kusraev, A.G.: Boolean valued transfer principle for injective Banach lattices. Siberian Math. J. 25(1), 57–65 (2015)

    Article  MathSciNet  Google Scholar 

  55. Kusraev, A.G., Kutateladze, S.S.: Analysis of subdifferentials via Boolean-valued models. Dokl. Akad. Nauk SSSR 265(5), 1061–1064 (1982)

    MathSciNet  MATH  Google Scholar 

  56. Kusraev, A.G., Kutateladze, S.S.: Boolean Valued Analysis. Kluwer, Dordrecht (1999)

    Book  MATH  Google Scholar 

  57. Kusraev, A.G., Kutateladze, S.S.: Introduction to Boolean Valued Analysis. Nauka, Moscow (2005, in Russian)

    Google Scholar 

  58. Kusraev, A.G., Kutateladze, S.S.: Boolean Valued Analysis: Selected Topics. In: Trends in Science: The South of Russia. A Mathematical Monographs, vol. 6. SMI VSC RAS, Vladikavkaz (2014)

    Google Scholar 

  59. Kusraev, A.G., Kutateladze, S.S.: Geometric characterization of injective Banach lattices (2019). arXiv:1910.08299v1 [math.FA]

    Google Scholar 

  60. Kusraev, A.G., Kutateladze, S.S.: Two applications of Boolean valued analysis. Siberian Math. J. 60(5), 902–910 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  61. Kusraev, A.G., Kutateladze, S.S.: Some applications of Boolean valued analysis. J. of Appl. Logics 7(4), 427–457 (2020)

    Google Scholar 

  62. Kusraev A.G., Malyugin S.A.: On atomic decomposition of vector measures. Sibirsk. Mat. Zh. 30(5), 101–110 (1989)

    MathSciNet  MATH  Google Scholar 

  63. Kutateladze, S.S.: Support sets of sublinear operators. Dokl. Akad. Nauk SSSR 230(5), 1029–1032 (1976)

    MathSciNet  Google Scholar 

  64. Kutateladze, S.S.: Caps and faces of operator sets. Dokl. Akad. Nauk SSSR 280(2), 285–288 (1985)

    MathSciNet  Google Scholar 

  65. Kutateladze, S.S.: Criteria for subdifferentials to depict caps and faces. Sibirsk. Mat. Zh. 27(3), 134–141 (1986)

    MathSciNet  MATH  Google Scholar 

  66. Kutateladze S.S.: On Grothendieck subspaces. Siberian Math. J. 46(3), 620–624 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  67. Kutateladze, S.S.: Mathematics and Economics in the Legacy of Leonid Kantorovich. Vladikavkaz Math. J. 14(1), 7–21 (2012)

    MathSciNet  MATH  Google Scholar 

  68. Lotz, H.P.: Extensions and liftings of positive linear mappings on Banach lattices. Trans. Am. Math. Soc. 211, 85–100 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  69. Luxemburg, W.A.J., Schep, A.: A Radon–Nikodým type theorem for positive operators and a dual. Indag. Math. 40, 357–375 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  70. Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces, vol. 1. North Holland, Amsterdam (1971)

    MATH  Google Scholar 

  71. Meyer-Nieberg, P.: Banach Lattices. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  72. Neumann, M.: On the Strassen disintegration theorem. Arch. Math. 29(4), 413–420 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  73. Nishimura, H.: An approach to the dimension theory of continuous geometry from the standpoint of Boolean valued analysis. Publ. RIMS Kyoto Univ. 20, 1091–1101 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  74. Nishimura, H.: Applications of Boolean valued set theory to abstract harmonic analysis on locally compact groups. Publ. RIMS, Kyoto Univ. 21, 181–190 (1985)

    Google Scholar 

  75. Nishimura, H.: Boolean valued Dedekind domains. Publ. RIMS, Kyoto Univ. 37(1), 65–76 (1991)

    Google Scholar 

  76. Nishimura, H.: Boolean valued Lie algebras. J. Symbolic Logic 56(2), 731–741 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  77. Nishimura, H.: Boolean transfer principle from L -algebras to AL -algebras. Math. Logic Quarterly 39(1), 241–250 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  78. Ozawa, M.: Boolean valued interpretation of Hilbert space theory. J. Math. Soc. Japan 35(4), 609–627 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  79. Ozawa, M.: Boolean valued analysis and type I AW -algebras. Proc. Japan Acad. Ser. A Math. Sci. 59A(8), 368–371 (1983)

    MathSciNet  MATH  Google Scholar 

  80. Ozawa, M.: A classification of type I AW -algebras and Boolean valued analysis. Proc. Japan Acad. Ser. A Math. Sci. 36(4), 589–608 (1984)

    MathSciNet  MATH  Google Scholar 

  81. Ozawa, M.: A transfer principle from von Neumann algebras to AW -algebras. J. Lond. Math. Soc. 32(1), 141–148 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  82. Ozawa, M.: Boolean valued analysis approach to the trace problem of AW -algebras. J. Lond. Math. Soc. 33(2), 347–354 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  83. Ozawa, M.: Embeddable AW -algebras and regular completions. J. Lond. Math. Soc. 34(3), 511–523 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  84. Ozawa, M.: Boolean valued interpretation of Banach space theory and module structures of von Neumann algebras. Nagoya Math. J. 117, 1–36 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  85. Schaefer, H.H.: Banach Lattices and Positive Operators. Springer, Berlin (1974)

    Book  MATH  Google Scholar 

  86. Schue, J.R.: Hilbert space methods in the theory of Lie algebras. Trans. Am. Math. Soc. 95, 69–80 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  87. Scott, D.: Boolean Models and Nonstandard Analysis. In: Luxemburga, W.A.J. (ed.) Applications of Model Theory to Algebra, Analysis, and Probability, pp. 87–92. Holt, Rinehart, and Winston, New York (1969)

    Google Scholar 

  88. Sikorskiı̆, M.R.: Boolean Valued Analysis of Operators on Multinormed Spaces and Its Applications, vol. VINITI, pp. 3286–83 (1983, in Russian)

    Google Scholar 

  89. Sikorskiı̆, M.R.: Some applications of Boolean valued models of set theory to the study of operators on multiormed space. Izv. Vuzov Mat. 2, 82–84 (1989)

    Google Scholar 

  90. Solovay, R.: A model of set theory in which every set of reals is Lebesgue measurable. Annal. Math. 92(1), 1–56 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  91. Solovay, R., Tennenbaum, S.: Iterated Cohen extensions and Souslin’s problem. Ann. Math. 94(2), 201–245 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  92. Takeuti, G.: Two Applications of Logic to Mathematics. Princeton University Press, Princeton (1978)

    MATH  Google Scholar 

  93. Takeuti, G.: Boolean valued analysis. In: Fourman, M.P., Mulvey, C.J., Scott, D.S. (eds.) Applications of Sheaves. Proceedings of Resarch Symposium Application Sheaf Theory to Logic, Algebra and Analysis University Durham, Durham, 1977. Lecture Notes in Mathematical, vol. 753, pp. 714–731. Springer, Berlin (1979)

    Google Scholar 

  94. Takeuti, G.: A transfer principle in harmonic analysis. J. Symbolic Logic 44(3), 417–440 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  95. Takeuti, G.: Boolean completion and m-convergence. In: B. Banaschewski (ed.) Categorical Aspects of Topology and Analysis. Proceedings of International Conference Carleton University, Ottawa (1981). Lecture Notes in Mathematical, vol. 915, pp. 333–350. Springer, Berlin (1982)

    Google Scholar 

  96. Takeuti, G.: Von Neumann algebras and Boolean valued analysis. J. Math. Soc. Japan 35(1), 1–21 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  97. Takeuti, G.: C -algebras and Boolean valued analysis. Jpn. J. Math. 9(2), 207–246 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  98. Takeuti, G.: Boolean Simple Groups and Boolean Simple Rings. J. Symbol. Logic 53(1), 160–173 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  99. Takeuti, G., Zaring, W.M.: Axiomatic set Theory. Springer, New York (1973)

    Book  MATH  Google Scholar 

  100. Topping, D.M.: Jordan algebras of self-adjoint operators. Mem. Am. Math. Soc 53, 1–48 (1965)

    MathSciNet  MATH  Google Scholar 

  101. Vladimirov, D.A.; Boolean Algebras. Nauka, Moscow (1969, Russian)

    Google Scholar 

  102. von Neumann, J.: Continuous Geometry. Princeton University Press, Princeton (1960)

    MATH  Google Scholar 

  103. Vopěnka, P.: General theory of ▽-models. Comment. Math. Univ. Carolin 8(1), 147–170 (1967)

    MathSciNet  MATH  Google Scholar 

  104. Vulikh, B.Z.: Introduction to the Theory of Partially Ordered Spaces. Wolters–Noordhoff Publications, Groningen (1967)

    MATH  Google Scholar 

  105. Wickstead, A.W.: Representation and duality of multiplication operators on Archimedean Riesz spaces. Comp. Math. 35(3), 225–238 (1977)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Kusraev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kusraev, A.G., Kutateladze, S.S. (2021). Boolean Valued Analysis: Background and Results. In: Kusraev, A.G., Totieva, Z.D. (eds) Operator Theory and Differential Equations. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-49763-7_9

Download citation

Publish with us

Policies and ethics