Skip to main content

Standard Model, and Its Standard Problems

  • Chapter
  • First Online:
Theoretical Physics, Wavelets, Analysis, Genomics

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 537 Accesses

Abstract

Since fifty years the standard model of particle physics reigns supreme. Not only does it explain the huge amount of accelerator data amassed with great precision. In cosmology it does have a say and may explain dark matter and absence of anti-matter. The model obtains by gauging its symmetries to generate the electroweak, strong and gravitational force. Symmetry breaking effects on the quantum level cause the standard model to obey a set of consistency conditions in order to be a viable quantum theory. These conditions need gravity to fix the hypercharges. The inclusion of gravity poses one of the standard problems, the unbearably heavy weight of the vacuum. Another standard problem discussed is the colossal spread in masses of the particles, more than 1013 decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 139.00
Price excludes VAT (USA)
Softcover Book
USD 179.99
Price excludes VAT (USA)
Hardcover Book
USD 179.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    There are many theories that cannot be checked. But one thing you can check: they will come to a miserable end.

  2. 2.

    This result, the equivalence principle, is to be expected for elementary particles if you are ready to accept that the gravitational field couples to the particles through a massless spin two particle. Furthermore that relativistic field theory governs elementary particles. The argument is sixty years old and due to Weinberg [12].

  3. 3.

    Named after Pontecorvo, Maki, Nakagawa and Sakata [42].

  4. 4.

    It is amusing to note that the only other known scale on the horizontal axis between 10−3 − 10−2 eV is the scale of the energy density of the cosmological constant.

  5. 5.

    These are the Sakharov [61] conditions.

  6. 6.

    The effective coupling depends also on the occupation number, \(g_{eff}^2=g^2(T)/\left (\exp (p/T)-1\right )\). So for long wave length modes p ∼ g2(T)T the effective coupling is \({\mathcal O}(1)\), no matter how small g(T)!

  7. 7.

    For earlier work see [51].

  8. 8.

    Inversely, (3.16), (3.10), and (3.9) imply the gravitational constraint (3.19). Had there been a U(1) vector field coupling to lepton “colour” then the corresponding anomaly cancellation would have given (3.16).

  9. 9.

    This is easily justified for infinitesimal transformations x = x + δx.

  10. 10.

    The reduced Planck mass MP compares to the Fermi scale as vMP = 10−16.

  11. 11.

    In the original Einstein theory any given configuration with \(\sqrt {-g}\neq 1\) can be brought by an Einstein transformation to the uniform configuration \(\sqrt {-g}=1\), a fact already known to and used by Schwarzschild in his original black hole solution.

  12. 12.

    Note the factor 1∕2 compared to the anomaly of the axial current (3.7). It is due to the absence of the righthanded neutrino.

  13. 13.

    In absence of torsion.

  14. 14.

    For a physical interpretation see ’t Hooft [68].

References

  1. Fock, V., 1926, Über die invariante Form der Wellen- und der Bewegungsgleichungen für einen geladenen Massenpunkt, Zeit. für Physik 39, 226–232.

    Article  MATH  Google Scholar 

  2. Weyl, H., 1929, Elektron und Gravitation, Zeit. für Physik 56, 330–352.

    Article  MATH  Google Scholar 

  3. Weyl,H.,1950, “A remark on the coupling of gravitation and electron, Phys.Rev.77,699.

    Google Scholar 

  4. Yang, C. N., Mills, R. (1954). “Conservation of Isotopic Spin and Isotopic Gauge Invariance”, Phys. Rev. 96 (1): 191–195.

    MathSciNet  MATH  Google Scholar 

  5. Cartan, E., 1922, Sur une generalisation de la notion de courbure de Riemann et les espaces de torsion, C. R. Acad. Sci. (Paris)174 593 595. Cartan E. 1923, Sur la connexion affine et la theorie de la relativite generalisee, Part I Ann. Ec. Norm. 40: 325–412 and 41 1–25; Part II: 42 17–88.

    Google Scholar 

  6. R. Utiyama, Phys. Rev.101 (1956) 1597. Kibble T. W. B. 1961, “Lorentz Invariance and the Gravitational Field”, JMP2 212–221. D. W. Sciama, “On the analogy between charge and spin in General Relativity”, Festschrift for Infeld pg 415, Pergamon Press, Oxford 1962. R. Utiyama, Phys. Rev., 101, 1597 (1956).

    Google Scholar 

  7. Hehl, Friedrich W., von der Heyde Paul, Kerlick, G. David, and Nester. James M., 1976a, “General relativity with spin and torsion: Foundations and prospects”, Rev. Mod. Phys. 48, 393–416.

    Google Scholar 

  8. I. L. Shapiro, Physical Aspects of the Space-Time Torsion, Phys.Rept.357:113,2002, arXiv:hep-th/0103093.

    Google Scholar 

  9. Cosserat, E and F (1909).Théorie des corps déformables. Paris: Hermann.

    Google Scholar 

  10. Atom-Interferometric Test of the Equivalence Principle at the 10−12 Level Peter Asenbaum, Chris Overstreet, Minjeong Kim, Joseph Curti, and Mark A. Kasevich Phys. Rev. Lett. 125, 191101.

    Google Scholar 

  11. Eötvös R.V., Pekar D., Fekete E., Ann. Physik, 68(1922) 11–66. Roll P.G., Krotkov R., Dicke R.H., Ann. Phys., 26 (1964)442–517; Baessler S., Heckel B.R., Adelberger E.G., Gundlach J.H., Schmidt U. and Swanson H.E., Phys. Rev. Lett.83 (1999) 3585–3588.

    Google Scholar 

  12. S. Weinberg, Phys.Rev. B 135 (1964) 1049.

    Article  Google Scholar 

  13. S. Bludman, Nuovo Cim. 9 (1958) 433. S. Glashow, Nucl.Phys. 22 (1961) 579.

    Google Scholar 

  14. Adler, S. L. Axial-vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426 (1969); Bell, J. S., Jackiw, R.: A PCAC puzzle in the sigma-model. Nuovo Cim. 60A, 47–61 (1969).

    Google Scholar 

  15. Nielsen, H. B., Ninomiya, M. The Adler-Bell-Jackiw anomaly and Weyl Fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

    Article  MathSciNet  Google Scholar 

  16. Rabi, I.I. Das freie Elektron im homogenen Magnetfeld nach der Diracschen Theorie. Z. Physik 49, 507–511 (1928).

    Article  MATH  Google Scholar 

  17. M. F. Atiyah and I. M. Singer, The index of elliptic operators on compact manifolds, Bull. Amer. Math. Soc. 69 (1963), 422–433.

    Article  MathSciNet  MATH  Google Scholar 

  18. Lee, T.D.; Yang, C.N. (1956). “Question of Parity Conservation in Weak Interactions”. Physical Review. 104 (1): 254–258.

    Article  Google Scholar 

  19. Chirality invariance and the universal Fermi interaction, E.C.G. Sudarshan, R. E. Marshak, Phys.Rev. 109 (1958) 1860. R. P. Feynman and M. Gell-Mann, Phys. Rev. 109 (1958) 193.

    Google Scholar 

  20. M. Goldhaber, L.Grodzins and A.W. Sunyar, Phys.Rev. 109 (1958) 1015–1017.

    Article  Google Scholar 

  21. Y. Nambu and G. Jona-Lasinio (1961), Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. I, Phys. Rev. 122, 345–358.

    Article  Google Scholar 

  22. P.W.Higgs, Phys. Rev. Lett. 13: 508–9 (1964). Englert, F. and Brout, R. Broken Symmetry and the Mass of Gauge Vector Mesons. Phys. Rev. Lett. 13: 321 (1964).

    Google Scholar 

  23. LHCb collaboration, arXiv:2103.11769.

    Google Scholar 

  24. ’t Hooft, G (1971). Renormalization of massless Yang-Mills fields. Nucl. Phys. B33: 173. ’t Hooft, G (1971). Renormalizable Lagrangians for massive Yang-Mills fields. Nucl. Phys. B35: 167. ’t Hooft, G and Veltman, M (1972). Regularization and renormalization of gauge fields. Nucl. Phys. B44: 189.

    Google Scholar 

  25. D.J. Gross; F. Wilczek, Ultraviolet behavior of non-abelian gauge theories, Physical Review Letters. 30 (26): 1343–1346. H.D. Politzer, Reliable perturbative results for strong interactions”. Physical Review Letters. 30 (26): 1346–1349.

    Google Scholar 

  26. C.P. Korthals Altes and M. Perrottet, Phys Lett. B 39 (1972), 546.

    Article  Google Scholar 

  27. B. Abi et al. (Muon g-2 Collaboration) Phys. Rev. Lett. 126, 141801.

    Google Scholar 

  28. The Standard Model Higgs boson as the inflaton, Fedor L. Bezrukov, Mikhail Shaposhnikov, Phys.Lett.B 659 (2008) 703–706, 0710.3755 [hep-th]

    Google Scholar 

  29. C. Germani, A. Kehagias, Phys.Rev.Lett.105.011302; arXiv:1003.2635v2 and references therein.

    Google Scholar 

  30. A.A. Belavin; A.M. Polyakov; A.S. Schwartz; Yu.S.Tyupkin (1975). “Pseudoparticle solutions of the Yang-Mills equations”. Phys. Lett. B. 59 (1): 85–87.

    Article  MathSciNet  Google Scholar 

  31. G.’t Hooft, Phys. Rev. Lett.37, 8 (1976); Phys. Rev.D14, 3432 (1976).

    Google Scholar 

  32. Super Kamiokande collaboration, Phys.Rev.Lett.86: 5656–5660, 2001; arXiv:hep-ex/0103033.

    Google Scholar 

  33. Q.R. Ahmad et al., Phys.Rev. Lett.89, 011302, 2002, nucl-ex/0204008. For a review see A.B. McDonald, Invited Paper for Nobel Symposium 129, August 19–24, 2004, Enköping, Sweden, Phys.Scripta T121 (2005) 29–32; arXiv:hep-ex/0412060v1.

    Google Scholar 

  34. Atlas collaboration, Phys.Lett. B716 (2012) 1–29; arXiv:1207.7214 [hep-ex].

    Google Scholar 

  35. A Model of Leptons. Steven Weinberg, Phys.Rev.Lett. 19 (1967) 1264–1266.

    Google Scholar 

  36. Bouchiat, C., Iliopoulos, J., Meyer, Ph. (1972), An anomaly-free version of Weinberg’s model, Physics Letters B 38 (7): 519–523, (1972).

    Google Scholar 

  37. H. Georgi and S. L. Glashow, “Gauge theories without anomalies,” Phys. Rev. D 6, 429 (1972). D. J. Gross and R. Jackiw, “Effect of anomalies on quasi-renormalizable theories,” Phys. Rev. D6, 477 (1972). L. Alvarez-Gaume and E. Witten, “Gravitational Anomalies,” Nucl. Phys. B 234, 269 (1984).

    Google Scholar 

  38. Fritzsch, H.; Gell-Mann, M.; Leutwyler, H. (1973). “Advantages of the color octet gluon picture”. Physics Letters. 47B (4): 365–368.

    Article  Google Scholar 

  39. S. Weinberg, Baryon and lepton non-conserving processes, Phys. Rev. Lett. 43, 1566, 1979.

    Article  Google Scholar 

  40. Kobayashi, M.; Maskawa, T. (1973). “CP-violation in the renormalizable theory of weak interaction”. Progress of Theoretical Physics. 49 (2): 652–657.

    Article  Google Scholar 

  41. P. Minkowski, Physics Letters B67 (1977), 421–428; Gell-Mann, M.; Ramond, P.; Slansky, R. (1979). Freedman, D.; Van Nieuwenhuizen, P. (eds.). Supergravity. Amsterdam: North Holland. pp. 315–321.

    Google Scholar 

  42. Maki, Z.; Nakagawa, M.; Sakata, S. (1962). “Remarks on the unified model of elementary particles”. Progress of Theoretical Physics. 28 (5): 870.

    Article  MATH  Google Scholar 

  43. A. Boyarsky, J. Franse, D. Iakubovskyi, and O. Ruchayskiy, Phys. Rev. Lett. 115, 161301 (2015), 1408.2503. Deep XMM Observations of Draco rule out at the 99% Confidence Level a Dark Matter Decay Origin for the 3.5 keV Line; Tesla E. Jeltema, Stefano Profumo, Mon.Not.Roy.Astron.Soc. 458 (2016) 4, 3592–3596, 1512.01239 [astro-ph.HE].

    Article  Google Scholar 

  44. Takehiko Asaka and Mikhail Shaposhnikov, The νMSM, Dark Matter and Baryon Asymmetry of the Universe, Phys.Lett.B620:17–26,2005;arXiv:hep-ph/0505013. Takehiko Asaka, Steve Blanchet, and Mikhail Shaposhnikov, Phys.Lett.B631:151–156,2005, arXiv:hep-ph/0503065v1. Uniting Low-Scale Leptogenesis Mechanisms, Juraj Klarić, Mikhail Shaposhnikov(EPFL, Lausanne, LPPC and Ecole Polytechnique, Lausanne), Inar Timiryasov, Phys.Rev.Lett. 127 (2021) 11, 111802 ⋅ e-Print: 2008.13771 [hep-ph]

    Google Scholar 

  45. P.F. De Salas, S. Gariazzo, O. Mena, C.A. Ternes, M. Tórtola, Front.Astron.Space Sci. 5 (2018) 36; e-Print: 1806.11051 [hep-ph].

    Google Scholar 

  46. see e.g. Relic neutrino decoupling with flavour oscillations revisited, Pablo F. de Salas, Sergio Pastor, JCAP 07 (2016) 051 ⋅ e-Print: 1606.06986 [hep-ph].

    Google Scholar 

  47. Matching conditions and Higgs mass upper bounds revisited, Thomas Hambye, Kurt Riesselmann, Phys.Rev.D 55 (1997) 7255–7262; hep-ph/9610272 [hep-ph]. For a review: F. Jegerlehner, Acta Phys.Polon.B 52 (2021) 6–7, 575–605; 2106.00862 [hep-ph].

    Google Scholar 

  48. M. Laine, M.Meyer, JCAP 1507 (2015) 035; arXiv:1503.04935v2 [hep-ph].

    Google Scholar 

  49. Michela D’Onofrio, Kari Rummukainen, Phys. Rev. D 93, 025003 (2016); arXiv:1508.07161v1 [hep-ph] and references therein.

    Google Scholar 

  50. J. Ghiglieri and M. Laine, Gravitational wave background from Standard Model physics: Qualitative features, JCAP 07 (2015) 022 [1504.02569]. Gravitational wave background from non-Abelian reheating after axion-like inflation, P. Klose, M. Laine, S. Procacci; 2201.02317 [hep-ph]

    Google Scholar 

  51. C.Q. Geng and R.E. Marshak, Phys. Rev. D 39. 693 (1989); J.A. Minahan, Pierre Ramond, R.C. Warner, Phys.Rev.D 41 (1990) 715; A. Font, L. Ibanez and F. Quevedo, Phys. Lett. 228B, 79 (1989); R. Foot, G. C. Joshi, H. Lew and R. R. Volkas, Mod. Phys. Lett. A5, 95 (1990); K.S. Babu and R. N. Mohapatra, Phys. Rev. Lett. 63, 938 (1989); J.Minahan, P. Ramond and R. Warner, Phys. Rev. D 41, 715 (1990); S. Rudaz, Phys. Rev. D41, 2619 (1990). E. Golowich and P. B. Pal, Phys. Rev.D 41, 3537 (1990); P.H. Frampton, R.N. Mohapatra, Phys.Rev.D 50 (1994) 3569–3571; hep-ph/9312230 [hep-ph].

    Google Scholar 

  52. Nakarin Lohitsiri, David Tong, SciPost Phys. 8 (2020) 1, 009; 1907.00514 [hep-th]. .

    Google Scholar 

  53. Is the Lee constant a cosmological constant? Andrei D. Linde, JETP Lett. 19 (1974) 183, Pisma Zh.Eksp.Teor.Fiz. 19 (1974) 320–322. Cosmology and the Higgs Mechanism, M.Veltman, Phys.Rev. Lett. 34,(1975), 777.

    Google Scholar 

  54. The Exchange of Massless Spin Two Particles, J.J. van der Bij, H. van Dam, Yee Jack Ng, Physica A 116 (1982) 307–320. Zee, A., 1985, in High Energy Physics: Proceedings of the 20th Annual Orbis Scientiae, 1983, edited by S. L. Mintz and A. Perlmutter (Plenum, New York). Buchmuller, W., and N. Dragon, Phys.Lett.B 207 (1988) 292–294, Phys.Lett.B 223 (1989) 313–317. Self-tuning vacuum variable and cosmological constant, F. R. Klinkhamer, G. E. Volovik, Phys.Rev.D 77 (2008) 085015.

    Google Scholar 

  55. S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61,1 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  56. Casimir, H.B.G.,1948, K.Ned.Acad. Wet. 51, 635.

    Google Scholar 

  57. Sparnaay, M (1958). “Measurements of attractive forces between flat plates”. Physica. 24 (6–10): 751–764. Mohideen, U.; Roy, Anushree (1998). “Precision Measurement of the Casimir Force from 0.1 to 0.9 μm”. Physical Review Letters. 81 (21): 4549–4552. arXiv:physics/9805038.

    Google Scholar 

  58. E.P. Wigner, Ann.Math 40(1939) 149. Group Theoretical Discussion of Relativistic Wave Equations, V. Bargmann, Eugene P. Wigner, Proc.Nat.Acad.Sci. 34 (1948) 211

    Google Scholar 

  59. Riess, A. G. et al., The Astronomical Journal. 116 (3): 1009–1038. arXiv:astro-ph/9805201. Perlmutter, S. et al., The Astrophysical Journal. 517 (2): 565–586. arXiv:astro-ph/9812133. Schmidt, B.P. et al., The Astrophysical Journal. 507 (1): 46–63. arXiv:astro-ph/9805200. The Planck Collaboration (2020). “Planck 2018 results. VI. Cosmological parameters”. Astronomy and Astrophysics. 641: A6. arXiv:1807.06209.

    Google Scholar 

  60. Topology in the Weinberg-Salam Theory, N.S. Manton, Phys.Rev.D 28 (1983) 2019. A Saddle Point Solution in the Weinberg-Salam Theory, Frans R. Klinkhamer, N.S. Manton, Phys.Rev.D 30 (1984) 2212.

    Google Scholar 

  61. Sakharov, A. D., “Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe”, JETP Letters. 5 (1): 24–26.

    Google Scholar 

  62. V. A. Kuzmin, V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 155, 36 (1985).

    Article  Google Scholar 

  63. T. Kimura, Prog. Theor. Phys.42, 1191 (1969). R. Delbourgo and A. Salam, Phys. Lett.40B, 381 (1972). T. Eguchi and P. Freund, Phys. Rev. Lett., 1251 (1976).

    Google Scholar 

  64. A. Dobado and A. Maroto, The standard model anomalies in curved space-time with torsion, Phys. Rev.D54(1996) 5185–5194,hep-ph/9509227.

    Google Scholar 

  65. S. W. Hawking, Gravitational instantons, Phys. Lett.60A(1977) 81.

    Article  MathSciNet  Google Scholar 

  66. Tohru Eguchi, Andrew J. Hanson, Self-dual Solutions to Euclidean Gravity, Annals Phys. 120 (1979) 82.

    Article  MathSciNet  MATH  Google Scholar 

  67. G.W. Gibbons, S.W. Hawking, Phys. Lett. 78B (1978),430.

    Article  Google Scholar 

  68. A Physical Interpretation of Gravitational Instantons, Gerard ’t Hooft, Nucl.Phys.B 315 (1989) 517–527.

    Google Scholar 

  69. Page, D.N., Phys. Lett. 78B 249 (1978).

    Article  Google Scholar 

  70. S.W. Hawking and C.N. Pope, Phys. Lett. 73B (1978) 42.

    Article  Google Scholar 

  71. The Positive action conjecture and asymptotically Euclidean Metrics in Quantum Gravity, G.W. Gibbons, C.N. Pope, Commun.Math.Phys.66, 267–290(1979); New gravitational index theorems and super theorems, S.M.Christensen, M.J.Duff, Nuclear Physics B154 (1979).

    Google Scholar 

  72. D.T. Regan, 66th US Secretary of the Treasury, dixit.

    Google Scholar 

Download references

Acknowledgements

Thanks are due to Jan Smit, members of the NIKHEF theory group, Mikko Laine and Gerard ’t Hooft for discussions. Hospitality of the NIKHEF theory group and patience of Thierry Paul are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

Korthals Altes, C.P. (2023). Standard Model, and Its Standard Problems. In: Flandrin, P., Jaffard, S., Paul, T., Torresani, B. (eds) Theoretical Physics, Wavelets, Analysis, Genomics. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-45847-8_10

Download citation

Publish with us

Policies and ethics