Skip to main content

Periods and Superstring Amplitudes

  • Conference paper
  • First Online:
Periods in Quantum Field Theory and Arithmetic (ICMAT-MZV 2014)

Abstract

Scattering amplitudes which describe the interaction of physical states play an important role in determining physical observables. In string theory the physical states are given by vibrations of open and closed strings and their interactions are described (at the leading order in perturbation theory) by a world–heet given by the topology of a disk or sphere, respectively. Formally, for scattering of N strings this leads to \(N\!-\!3\)–dimensional iterated real integrals along the compactified real axis or \(N\!-\!3\)–dimensional complex sphere integrals, respectively. As a consequence the physical observables are described by periods on \({\mathscr {M}}_{0,N}\)–the moduli space of Riemann spheres of N ordered marked points. The mathematical structure of these string amplitudes share many recent advances in arithmetic algebraic geometry and number theory like multiple zeta values, single–valued multiple zeta values, Drinfeld, Deligne associators, Hopf algebra and Lie algebra structures related to Grothendiecks Galois theory. We review these results, with emphasis on a beautiful link between generalized hypergeometric functions describing the real iterated integrals on \({\mathscr {M}}_{0,N}(\mathbf{R})\) and the decomposition of motivic multiple zeta values. Furthermore, a relation expressing complex integrals on \({\mathscr {M}}_{0,N}(\mathbf{C})\) as single–valued projection of iterated real integrals on \({\mathscr {M}}_{0,N}(\mathbf{R})\) is exhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 149.00
Price excludes VAT (USA)
Softcover Book
USD 199.99
Price excludes VAT (USA)
Hardcover Book
USD 199.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In field–theory with \({\mathscr {N}}=4\) supersymmetry such methods have recently been pioneered by using tools in algebraic geometry [1, 2] and arithmetic algebraic geometry [27, 31].

  2. 2.

    The initial data for a GKZ–system is an integer matrix \(A\in \mathbf{Z}^{r\times n}\) together with a parameter vector \(\gamma \in \mathbf{C}^r\). For a given matrix A the structure of the GKZ–system depends on the properties of the vector \(\gamma \) defining non–resonant and resonant systems. Example a non–resonant system of A–hypergeometric equations is irreducible [5].

  3. 3.

    More precisely, at an algebraic value of their argument their value is \(\frac{1}{\pi }\wp \), with \(\wp \) being the set of periods.

  4. 4.

    The matrix S with entries \(S_{\rho ,\sigma }=S[\rho |\sigma ]\) is defined as a \((N-3)!\times (N-3)!\) matrix with its rows and columns corresponding to the orderings \(\rho \equiv \{\rho (2),\ldots ,\rho (N-2)\}\) and \(\sigma \equiv \{\sigma (2),\ldots ,\sigma (N-2)\}\), respectively. The matrix S is symmetric, i.e. \(S^t=S\).

  5. 5.

    The ordering colons \(:\ldots :\) are defined such that matrices with larger subscript multiply matrices with smaller subscript from the left, i.e. \(: \, M_{i} \ M_{j} \, : = \left\rbrace \begin{array}{lcl}M_{i} \ M_j\ , &{} i \ge j\ ,\\ M_{j} \ M_i\ , &{} i<j\ .\end{array}\right.\) The generalization to iterated matrix products \(: M_{i_1} M_{i_2} \ldots M_{i_p}:\) is straightforward.

  6. 6.

    In [19, 31] motivic MZVs \(\zeta ^{\mathfrak {m}}\) are defined as elements of a certain graded algebra \({\mathscr {H}}\) equipped with a period homomorphism (46).

  7. 7.

    A Hopf algebra is an algebra \({\mathscr {A}}\) with multiplication \(\mu : {\mathscr {A}}\otimes {\mathscr {A}}\rightarrow {\mathscr {A}}\), i.e. \(\mu (x_1\otimes x_2)=x_1\cdot x_2\) and associativity. At the same time it is also a coalgebra with coproduct \(\varDelta : {\mathscr {A}}\rightarrow {\mathscr {A}}\otimes {\mathscr {A}}\) and coassociativity such that the product and coproduct are compatible: \(\varDelta (x_1\cdot x_2)=\varDelta (x_1)\cdot \varDelta (x_2)\), with \(x_1,x_2\in {\mathscr {A}}\).

  8. 8.

    Note, that there is no canonical choice of \(\phi \) and the latter depends on the choice of motivic generators of \({\mathscr {H}}\).

  9. 9.

    The choice of \(\phi \) describes for each weight \(2r+1\) the motivic derivation operators \(\partial _{2r+1}^\phi \) acting on the space of motivic MZVs \(\partial _{2r+1}^\phi :{\mathscr {H}}\rightarrow {\mathscr {H}}\) [17] as:

    $$\begin{aligned} \partial _{2r+1}^\phi =(c_{2r+1}^\phi \otimes id) \circ D_{2r+1}\ , \end{aligned}$$
    (55)

    with the coefficient function \(c_{2r+1}^\phi \).

  10. 10.

    Note the useful relation \(\phi ^B(Q_8^{\mathfrak {m}})=f_5f_3\ [M_3,M_5]\) for \(Q_8^{\mathfrak {m}}={1\over 5}\zeta _{3,5}^{\mathfrak {m}} \ [M_5,M_3]\).

  11. 11.

    For instance instead of taking a basis containing the depth one elements \(\zeta ^{\mathfrak {m}}_{2n+1}\) one also could choose the set of Lyndon words in the Hoffman elements \(\zeta ^{\mathfrak {m}}_{n_1,\ldots ,n_r}\), with \(n_i=2,3\) and define the corresponding matrices (33).

  12. 12.

    The relation (96) implies, that any commutator \({\mathscr {Q}}_{(2)}\) is similar to an anti–symmetric matrix, and hence (97) implies \([\; [M_a,M_b],[M_c,M_d]\; ]=0\), which in turn as a result of the Jacobi relation yields the following identity: \([M_a,[M_b,[M_c,M_d]]]-[M_b,[M_a,[M_c,M_d]]] = [\; [M_a,M_b],[M_c,M_d]\; ]=0\). Furthermore, (96) implies that the commutator \({\mathscr {Q}}_{(3)}\) is similar to a symmetric and traceless matrix. As a consequence from (98), we obtain the following anti–commutation relation: \(\{\; [M_a,M_b],[M_c,[M_d,M_e]\; \}=0\). Relations for \(N=5\) between different matrices \(M_{2i+1}\) have also been discussed in [9].

  13. 13.

    The factor \(V_\mathrm{CKG}\) accounts for the volume of the conformal Killing group of the sphere after choosing the conformal gauge. It will be canceled by fixing three vertex positions according to (1) and introducing the respective c–ghost factor \(|z_{1,N-1}z_{1,N}z_{N-1,N}|^2\).

References

  1. Arkani-Hamed, N., Bourjaily, J.L., Cachazo, F., Goncharov, A.B., Postnikov, A., Trnka, J.: Scattering amplitudes and the positive grassmannian. arXiv:1212.5605 [hep-th]

  2. Arkani-Hamed, N., Trnka, J.: The Amplituhedron. JHEP 1410, 30 (2014). arXiv:1312.2007 [hep-th]

    Article  Google Scholar 

  3. Bern, Z., Dixon, L.J., Perelstein, M., Rozowsky, J.S.: Multileg one loop gravity amplitudes from gauge theory. Nucl. Phys. B 546, 423 (1999). [hep-th/9811140]

    Article  Google Scholar 

  4. Bern, Z., Carrasco, J.J.M., Johansson, H.: New relations for gauge-theory amplitudes. Phys. Rev. D 78, 085011 (2008). arXiv:0805.3993 [hep-ph]

    Article  MathSciNet  Google Scholar 

  5. Beukers, F.: Algebraic A-hypergeometric functions. Invent. Math. 180, 589–610 (2010)

    Article  MathSciNet  Google Scholar 

  6. Bjerrum-Bohr, N.E.J., Damgaard, P.H., Vanhove, P.: Minimal basis for gauge theory amplitudes. Phys. Rev. Lett. 103, 161602 (2009). arXiv:0907.1425 [hep-th]

    Article  MathSciNet  Google Scholar 

  7. Bjerrum-Bohr, N.E.J., Damgaard, P.H., Sondergaard, T., Vanhove, P.: The momentum kernel of gauge and gravity theories. JHEP 1101, 001 (2011). arXiv:1010.3933 [hep-th]

    Article  MathSciNet  Google Scholar 

  8. Blümlein, J., Broadhurst, D.J., Vermaseren, J.A.M.: The multiple zeta value data mine. Comput. Phys. Commun. 181, 582 (2010). arXiv:0907.2557 [math-ph]

    Article  MathSciNet  Google Scholar 

  9. Boels, R.H.: On the field theory expansion of superstring five point amplitudes. Nucl. Phys. B 876, 215 (2013). arXiv:1304.7918 [hep-th]

    Article  MathSciNet  Google Scholar 

  10. Bogner, C., Weinzierl, S.: Periods and Feynman integrals. J. Math. Phys. 50, 042302 (2009). arXiv:0711.4863 [hep-th]

    Article  MathSciNet  Google Scholar 

  11. Broadhurst, D.J., Kreimer, D.: Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops. Phys. Lett. B 393, 403 (1997). [hep-th/9609128]

    Article  MathSciNet  Google Scholar 

  12. Broedel, J., Schlotterer, O., Stieberger, S.: Polylogarithms, multiple zeta values and superstring amplitudes. Fortsch. Phys. 61, 812 (2013). arXiv:1304.7267 [hep-th]

    Article  MathSciNet  Google Scholar 

  13. Broedel, J., Schlotterer, O., Stieberger, S., Terasoma, T.: Notes on Lie Algebra structure of Superstring Amplitudes. unpublished

    Google Scholar 

  14. Brown, F.: Single-valued multiple polylogarithms in one variable. C.R. Acad. Sci. Paris, Ser. I 338, 527–532 (2004)

    Google Scholar 

  15. Brown, F.: Multiple zeta values and periods of moduli spaces \(M_{0 ,n} ( {{\bf R}} )\). Ann. Sci. Ec. Norm. Sup. 42, 371 (2009). arXiv:math/0606419 [math.AG]

  16. Brown, F.C.S., Carr, S., Schneps, L.: Algebra of cell-zeta values. Compositio Math. 146, 731–771 (2010)

    Article  MathSciNet  Google Scholar 

  17. Brown, F.: On the decomposition of motivic multiple zeta values. Galois-Teichmüller Theory Arithmetic Geometry Adv. Stud. Pure Math. 63, 31–58 (2012). arXiv:1102.1310 [math.NT]

  18. Brown, F.C.S., Levin, A.: Multiple Elliptic Polylogarithms. arXiv:1110.6917 [math.NT]

  19. Brown, F.: Mixed tate motives over \({ Z}\). Ann. Math. 175, 949–976 (2012)

    Article  MathSciNet  Google Scholar 

  20. Brown, F.: Single-valued Motivic periods and multiple zeta values. SIGMA 2, e25 (2014) arXiv:1309.5309 [math.NT]

  21. Brown, F.: Periods and Feynman amplitudes. arXiv:1512.09265 [math-ph]

  22. Brown, F.: A class of non-holomorphic modular forms I. arXiv:1707.01230 [math.NT]

  23. Deligne, P.: Le groupe fondamental de la droite projective moins trois points. In: Galois groups over \({\bf Q}\), Springer, MSRI publications 16 (1989), 72-297; “Periods for the fundamental group,” Arizona Winter School (2002)

    Google Scholar 

  24. Drinfeld, V.G.: On quasitriangular quasi-Hopf algebras and on a group that is closely connected with \(Gal(\overline{Q},{Q}) \). Alg. Anal. 2, 149: English translation: leningrad Math. J. 2(1991), 829–860 (1990)

    Google Scholar 

  25. Drummond, J.M., Ragoucy, E.: Superstring amplitudes and the associator. JHEP 1308, 135 (2013). arXiv:1301.0794 [hep-th]

    Article  MathSciNet  Google Scholar 

  26. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Generalized Euler integrals and \(A\)-hypergeometric functions. Adv. Math. 84, 255–271 (1990)

    Article  MathSciNet  Google Scholar 

  27. Golden, J., Goncharov, A.B., Spradlin, M., Vergu, C., Volovich, A.: Motivic amplitudes and cluster coordinates. JHEP 1401, 091 (2014). arXiv:1305.1617 [hep-th]

    Article  Google Scholar 

  28. Goncharov, A.B.: Multiple zeta-values, Galois groups, and geometry of modular varieties. arXiv:math/0005069v2 [math.AG]

  29. Goncharov, A.B.: Multiple polylogarithms and mixed Tate motives. arXiv:math/ 0103059v4 [math.AG]

  30. Goncharov, A., Manin, Y.: Multiple \(\zeta \)-motives and moduli spaces \(\overline{{\cal{M}}}_{0, n}\). Compos. Math. 140, 1–14 (2004). arXiv:math/0204102

  31. Goncharov, A.B.: Galois symmetries of fundamental groupoids and noncommutative geometry. Duke Math. J. 128, 209–284 (2005). arXiv:math/0208144v4 [math.AG]

  32. Goncharov, A.B.: Private communication

    Google Scholar 

  33. Ihara, Y.: Some arithmetic aspects of Galois actions in the pro-p fundamental group of \({ P}^1-\{0, 1, \infty \}\). In: Arithmetic Fundamental Groups and Noncommutative Algebra. Proceedings of Symposia in Pure Mathematics 70 (2002)

    Google Scholar 

  34. Kawai, H., Lewellen, D.C., Tye, S.H.H.: A relation between tree amplitudes of closed and open strings. Nucl. Phys. B 269, 1 (1986)

    Article  MathSciNet  Google Scholar 

  35. Kontsevich, M., Zagier, D.: Periods. In: Engquist, B., Schmid, W. (eds.) Mathematics unlimited—2001 and beyond, Berlin, pp. 771–808. Springer, New York (2001)

    Google Scholar 

  36. Le, T.Q.T., Murakami, J.: Kontsevich’s integral for the Kauffman polynomial. Nagoya Math. J. 142, 39–65 (1996)

    Article  MathSciNet  Google Scholar 

  37. Mafra, C.R., Schlotterer, O., Stieberger, S.: Complete N-point superstring disk amplitude I. Pure spinor computation. Nucl. Phys. B 873, 419 (2013). arXiv:1106.2645 [hep-th]

    Article  MathSciNet  Google Scholar 

  38. Mafra, C.R., Schlotterer, O., Stieberger, S.: Complete N-point superstring disk amplitude II. Amplitude and hypergeometric function structure. Nucl. Phys. B 873, 461 (2013). arXiv:1106.2646 [hep-th]

    Article  MathSciNet  Google Scholar 

  39. Oprisa, D., Stieberger, S.: Six gluon open superstring disk amplitude, multiple hypergeometric series and Euler-Zagier sums. [hep-th/0509042]

    Google Scholar 

  40. Puhlfürst, G., Stieberger, S.: Differential equations, associators, and recurrences for amplitudes. Nucl. Phys. B 902, 186 (2016) arXiv:1507.01582 [hep-th]. A feynman integral and its recurrences and associators. Nucl. Phys. B 906, 168 (2016). arXiv:1511.03630 [hep-th]

  41. Schlotterer, O., Stieberger, S.: Motivic multiple zeta values and superstring amplitudes. J. Phys. A 46, 475401 (2013). arXiv:1205.1516 [hep-th]

    Article  MathSciNet  Google Scholar 

  42. Schnetz, O.: Graphical functions and single-valued multiple polylogarithms. Commun. Num. Theor. Phys. 08, 589 (2014). arXiv:1302.6445 [math.NT]

    Article  MathSciNet  Google Scholar 

  43. Stieberger, S., Taylor, T.R.: Multi-gluon scattering in open superstring theory. Phys. Rev. D 74, 126007 (2006). [hep-th/0609175]

    Article  MathSciNet  Google Scholar 

  44. Stieberger, S.: Open & Closed vs. Pure Open String Disk Amplitudes. arXiv:0907.2211 [hep-th]

  45. Stieberger, S.: Constraints on tree-level higher order gravitational couplings in superstring theory. Phys. Rev. Lett. 106, 111601 (2011). arXiv:0910.0180 [hep-th]

  46. Stieberger, S.: Closed superstring amplitudes, single-valued multiple zeta values and the Deligne associator. J. Phys. A 47, 155401 (2014). arXiv:1310.3259 [hep-th]

    Article  MathSciNet  Google Scholar 

  47. Stieberger, S., Taylor, T.R.: Closed string amplitudes as single-valued open string amplitudes. Nucl. Phys. B 881, 269 (2014). arXiv:1401.1218 [hep-th]

    Article  MathSciNet  Google Scholar 

  48. Terasoma, T.: Selberg integrals and multiple zeta values. Compos. Math. 133, 1–24 (2002)

    Article  MathSciNet  Google Scholar 

  49. Tsunogai, H.: On ranks of the stable derivation algebra and Deligne’s problem. Proc. Japan Acad. Ser. A 73, 29–31 (1997)

    Article  MathSciNet  Google Scholar 

  50. Zagier, D.: Values of zeta functions and their applications. In: Joseph, A., et al. (eds.) First European Congress of Mathematics (Paris, 1992), vol. II, pp. 497–512. Basel, Birkh��user (1994)

    Chapter  Google Scholar 

Download references

Acknowledgements

We wish to thank the organizers (especially José Burgos, Kurush Ebrahimi-Fard, and Herbert Gangl) of the workshop Research Trimester on Multiple Zeta Values, Multiple Polylogarithms, and Quantum Field Theory and the conference Multiple Zeta Values, Modular Forms and Elliptic Motives II at ICMAT, Madrid for inviting me to present the work exhibited in this publication and creating a stimulating atmosphere.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Stieberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stieberger, S. (2020). Periods and Superstring Amplitudes. In: Burgos Gil, J., Ebrahimi-Fard, K., Gangl, H. (eds) Periods in Quantum Field Theory and Arithmetic. ICMAT-MZV 2014. Springer Proceedings in Mathematics & Statistics, vol 314. Springer, Cham. https://doi.org/10.1007/978-3-030-37031-2_3

Download citation

Publish with us

Policies and ethics