Skip to main content

Hyperstability of a Linear Functional Equation on Restricted Domains

  • Chapter
  • First Online:
Frontiers in Functional Equations and Analytic Inequalities

Abstract

Let X, Y  be real Banach spaces, f : X → Y  and \(\mathcal H\) be a subset of X such that \({\mathcal H}^c\) is of the first category. Using the Baire category theorem we prove the Ulam–Hyers stability of the linear functional equation

$$\displaystyle f(ax+by+\alpha )=Af(x)+Bf(y)+C $$

for all \(x, y\in \mathcal H\), such that ∥x∥ + ∥y∥≥ d with d > 0, where a, b, A, B are nonzero real numbers and α ∈ X is fixed. As a consequence we solve the hyperstability problem associated to

$$\displaystyle \|f(ax+by+\alpha )-Af(x)-Bf(y)-C\|\le \delta \psi (x,y) $$

for all \(x, y \in \mathcal K\), where \(\mathcal K\) is a subset of \(\mathbb {R}\) with Lebesgue measure zero and ψ(x, y) = |x|p + |y|q, p, q < 0; or ψ(x, y) = |x|p|y|q, p + q < 0; or ψ(x, y) = |x|p|y|q, pq < 0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 84.99
Price excludes VAT (USA)
Softcover Book
USD 109.99
Price excludes VAT (USA)
Hardcover Book
USD 109.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Aoki, On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 2, 64–66 (1950)

    Article  MathSciNet  Google Scholar 

  2. B. Batko, Stability of an alternative functional equation. J. Math. Anal. Appl. 339, 303–311 (2008)

    Article  MathSciNet  Google Scholar 

  3. D.G. Bourgin, Classes of transformations and bordering transformations. Bull. Am. Math. Soc. 57, 223–237, (1951)

    Article  MathSciNet  Google Scholar 

  4. J. Brzdȩk, K. Ciepliński, Hyperstability and superstability. Abstr. Appl. Anal. 2013, Art. ID 401756, 13 pages (2013)

    Google Scholar 

  5. J. Brzdȩk, A. Pietrzyk, A note on stability of the general linear equation. Aequationes Math. 75(3), 267–270 (2008)

    Google Scholar 

  6. J. Brzdȩk, J. Sikorska, A conditional exponential functional equation and its stability. Nonlinear Anal. TMA 72, 2929–2934 (2010)

    Google Scholar 

  7. J. Chung, J.M. Rassias, Quadratic functional equations in a set of Lebesgue measure zero. J. Math. Anal. Appl. 419, 1065–1075 (2014)

    Article  MathSciNet  Google Scholar 

  8. D.H. Hyers, On the stability of the linear functional equations. Proc. Natl. Acad. Sci. U. S. A. 27, 222–224 (1941)

    Article  MathSciNet  Google Scholar 

  9. S.-M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property. J. Math. Anal. Appl. 222, 126–137 (1998)

    Article  MathSciNet  Google Scholar 

  10. S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis (Springer, New-York, 2011)

    Book  Google Scholar 

  11. S.-M. Jung, M.S. Moslehian, P.K. Sahoo, Stability of a generalized Jensen equation on restricted domains. J. Math. Inequal. 4, 191–206 (2010)

    Article  MathSciNet  Google Scholar 

  12. D. Molaei, A. Najati, Hyperstability of the general linear equation on restricted domains. Acta Math. Hungar. 149, 238–253 (2016)

    Article  MathSciNet  Google Scholar 

  13. J.C. Oxtoby, Measure and Category (Springer, New-York, 1980)

    Book  Google Scholar 

  14. M. Piszczek, Remark on hyperstability of the general linear equation. Aequationes Math. 88(1–2), 163–168 (2014)

    Article  MathSciNet  Google Scholar 

  15. M. Piszczek, Hyperstability of the general linear functional equation. Bull. Korean Math. Soc. 52(6), 1827–1838 (2015)

    Article  MathSciNet  Google Scholar 

  16. D. Popa, On the stability of the general linear equation. Results Math. 53(3–4), 383–389 (2009)

    Article  MathSciNet  Google Scholar 

  17. T. M. Rassias, On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72(2), 297–300 (1978)

    Article  MathSciNet  Google Scholar 

  18. J.M. Rassias, On the Ulam stability of mixed type mappings on restricted domains. J. Math. Anal. Appl. 281, 747–762 (2002)

    Article  MathSciNet  Google Scholar 

  19. J.M. Rassias, Asymptotic behavior of mixed type functional equations. Aust. J. Math. Anal. Appl. 1(1), Article 10, 1–21 (2004)

    Google Scholar 

  20. J. Sikorska, On two conditional Pexider functional equations and their stabilities. Nonlinear Anal. TMA 70, 2673–2684 (2009)

    Article  MathSciNet  Google Scholar 

  21. F. Skof, Sull’ approssimazione delle applicazioni localmente δ-additive. Atti della Accademia delle Scienze di Torino 117, 377–389 (1983)

    Google Scholar 

  22. S.M. Ulam, Problems in Modern Mathematics, vol. VI, Science edn. (Wiley, New York, 1940)

    Google Scholar 

Download references

Acknowledgements

This research was completed with the help of Professor Jaeyoung Chung. After finishing this work, Professor Jaeyoung Chung tragically passed away. Pray for the bliss of dead.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Kwon Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chung, J., Rassias, J.M., Lee, B., Choi, CK. (2019). Hyperstability of a Linear Functional Equation on Restricted Domains. In: Anastassiou, G., Rassias, J. (eds) Frontiers in Functional Equations and Analytic Inequalities. Springer, Cham. https://doi.org/10.1007/978-3-030-28950-8_2

Download citation

Publish with us

Policies and ethics