Skip to main content

Part of the book series: Problem Books in Mathematics ((1605,volume 1))

Abstract

We will denote by d(n) the number of positive divisors of n, by σ(n) the sum of those divisors, and by σ k (n) the sum of their kth powers, so that σ0(n) = d(n) and σ1(n)= σ(n). We use s(n) for the sum of the aliquot parts of n, i.e., the positive divisors of n other than n itself, so that s(n) = σ(n)—n. The number of distinct prime factors of n will be denoted by ω(n) and the total number, counting repetitions, by Ω(n).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 39.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Michael S. Brandstein, New lower bound for a factor of an odd perfect number, #82T-10-240, Abstracts Amer. Math. Soc., 3(1982) 257.

    Google Scholar 

  • Richard P. Brent & Graeme L. Cohen, A new lower bound for odd perfect numbers, Math. Comput, 53(1989) 431–437.

    MathSciNet  MATH  Google Scholar 

  • R. P. Brent, G. L. Cohen & H. J. J. te Riele, Improved techniques for lower bounds for odd perfect numbers, Math. Comput, 57(1991) 857–868; MR 92c: 11004.

    MATH  Google Scholar 

  • Graeme L. Cohen, On the largest component of an odd perfect number, J. Austral. Math. Soc. Ser. A, 42(1987) 280–286.

    MathSciNet  MATH  Google Scholar 

  • P. Hagis, Sketch of a proof that an odd perfect number relatively prime to 3 has at least eleven prime factors, Math. Comput, 40(1983) 399–404.

    MathSciNet  MATH  Google Scholar 

  • P. Hagis, On the second largest prime divisor of an odd perfect number, Lecture Notes in Math., 899, Springer-Verlag, New York, 1971, pp. 254–263.

    Google Scholar 

  • D. R. Heath-Brown, Odd perfect numbers, (submitted).

    Google Scholar 

  • Masao Kishore, Odd perfect numbers not divisible by 3 are divisible by at least ten distinct primes, Math. Comput, 31(1977) 274–279; MR 55 #2727.

    MathSciNet  MATH  Google Scholar 

  • Masao Kishore, Odd perfect numbers not divisible by 3. II, Math. Comput, 40(1983) 405–411.

    MathSciNet  MATH  Google Scholar 

  • M. D. Sayers, An improved lower bound for the total number of prime factors of an odd perfect number, M.App.Sc. Thesis, NSW Inst. Tech., 1986.

    Google Scholar 

  • H. Abbott, C.E. Aull, Ezra Brown & D. Suryanarayana, Quasiperfect numbers, Acta Arith., 22(1973) 439–447; MR 47 #4915; corrections, 29(1976) 427-428.

    MathSciNet  MATH  Google Scholar 

  • Leon Alaoglu & Paul Erdős, On highly composite and similar numbers, Trans. Amer. Math. Soc., 56(1944) 448–469; MR 6, 117b.

    MathSciNet  MATH  Google Scholar 

  • L. B. Alexander, Odd triperfect numbers are bounded below by 1060, M.A. thesis, East Carolina University, 1984.

    Google Scholar 

  • M. M. Artuhov, On the problem of odd h-fold perfect numbers, Acta Arith., 23(1973) 249–255.

    MathSciNet  MATH  Google Scholar 

  • Paul T. Bateman, Paul Erdős, Carl Pomerance & E.G. Straus, The arithmetic mean of the divisors of an integer, in Analytic Number Theory (Philadelphia, 1980) 197-220, Ledure Notes in Math., 899, Springer, Berlin — New York, 1981; MR 84b: 10066.

    Google Scholar 

  • Walter E. Beck & Rudolph M. Najar, A lower bound for odd triperfects, Math. Comput, 38(1982) 249–251.

    MathSciNet  MATH  Google Scholar 

  • S. J. Benkoski, Problem E2308, Amer. Math. Monthly, 79(1972) 774.

    MathSciNet  Google Scholar 

  • S. J. Benkoski & P. Erdős, On weird and pseudoperfect numbers, Math. Comput, 28(1974) 617–623; MR 50 #228; corrigendum, S. Kravitz, 29(1975) 673.

    MATH  Google Scholar 

  • Alan L. Brown, Multiperfect numbers, Scripta Math., 20(1954) 103–106; MR 16, 12.

    MathSciNet  MATH  Google Scholar 

  • E. A. Bugulov, On the question of the existence of odd multiperfect numbers (Russian), Kabardino-Balkarsk. Gos. Univ. Ucen. Zap., 30(1966) 9–19.

    MathSciNet  Google Scholar 

  • David Callan, Solution to Problem 6616, Amer. Math. Monthly, 99(1992) 783–789.

    MathSciNet  Google Scholar 

  • R. D. Carmichael & T. E. Mason, Note on multiply perfect numbers, including a table of 204 new ones and the 47 others previously published, Proc. Indiana Acad. Sci., 1911 257–270.

    Google Scholar 

  • Paolo Cattaneo, Sui numeri quasiperfetti, Boll. Un. Mat. Ital.(3), 6(1951) 59–62; Zbl. 42, 268.

    MathSciNet  MATH  Google Scholar 

  • Graeme L. Cohen, On odd perfect numbers II, multiperfect numbers and quasiperfect numbers, J. Austral. Math. Soc. Ser. A, 29(1980) 369–384; MR 81m:10009.

    MathSciNet  MATH  Google Scholar 

  • Graeme L. Cohen, The non-existence of quasiperfect numbers of certain forms, Fibonacci Quart., 20(1982) 81–84.

    MathSciNet  MATH  Google Scholar 

  • Graeme L. Cohen, On primitive abundant numbers, J. Austral. Math. Soc. Ser. A, 34(1983) 123–137.

    MathSciNet  MATH  Google Scholar 

  • Graeme L. Cohen, Primitive α-abundant numbers, Math. Comput, 43(1984) 263–270.

    MATH  Google Scholar 

  • Graeme L. Cohen, Stephen Gretton and his multiperfect numbers, Internal Report No. 28, School of Math. Sciences, Univ. of Technology, Sydney, Australia, Oct 1991.

    Google Scholar 

  • G. L. Cohen & P. Hagis, Results concerning odd multiperfect numbers, Bull. Malaysian Math. Soc., 8(1985) 23–26.

    MathSciNet  MATH  Google Scholar 

  • G. L. Cohen & M. D. Hendy, On odd multiperfect numbers, Math. Chronicle, 9(1980) 120–136.

    MathSciNet  MATH  Google Scholar 

  • G. L. Cohen & M. D. Hendy, On odd multiperfect numbers, Math. Chronicle, 10(1981) 57–61.

    MathSciNet  MATH  Google Scholar 

  • Philip L. Crews, Donald B. Johnson & Charles R. Wall, Density bounds for the sum of divisors function, Math. Comput, 26(1972) 773–777; MR 48 #6042; Errata 31(1977) 616; MR 55 #286.

    MathSciNet  MATH  Google Scholar 

  • J. T. Cross, A note on almost perfect numbers, Math. Mag., 47(1974) 230–231.

    MathSciNet  MATH  Google Scholar 

  • P. Erdős, On the density of the abundant numbers, J. London Math. Soc., 9(1934) 278–282.

    Google Scholar 

  • P. Erdős, Problems in number theory and combinatorics, Congressus Numerantium XVIII, Proc. 6th Conf. Numerical Math. Manitoba, 1976, 35-58 (esp. pp. 53-54); MR 80e: 10005.

    Google Scholar 

  • Benito Franqui & Mariano Garcia, Some new multiply perfect numbers, Amer. Math. Monthly, 60(1953) 459–462; MR 15, 101.

    MathSciNet  MATH  Google Scholar 

  • Benito Pranqui & Mariano Garcia, 57 new multiply perfect numbers, Scripta Math., 20(1954) 169–171 (1955); MR 16, 447.

    MathSciNet  Google Scholar 

  • Mariano Garcia, A generalization of multiply perfect numbers, Scripta Math., 19(1953) 209–210; MR 15, 199.

    MathSciNet  Google Scholar 

  • Mariano Garcia, On numbers with integral harmonic mean, Amer. Math. Monthly, 61(1954) 89–96; MR 15, 506, 1140.

    MathSciNet  MATH  Google Scholar 

  • Peter Hagis, The third largest prime factor of an odd multiperfect number exceeds 100, Bull. Malaysian Math. Soc., 9(1986) 43–49.

    MathSciNet  MATH  Google Scholar 

  • Peter Hagis, A new proof that every odd triperfect number has at least twelve prime factors, A tribute to Emil Grosswald: number theory and related analysis, 445-450 Contemp. Math., 143 Amer. Math. Soc., 1993. 43-49.

    Google Scholar 

  • Peter Hagis & Graeme L. Cohen, Some results concerning quasiperfect numbers, J. Austral. Math. Soc Ser. A, 33(1982) 275–286.

    MathSciNet  MATH  Google Scholar 

  • B. E. Hardy & M. V. Subbarao, On hyperperfect numbers, Proc. 13th Manitoba Conf. Numer. Math. Comput., Congressus Numerantium, 42(1984) 183–198; MR 86c: 11006.

    MathSciNet  Google Scholar 

  • B. Hornfeck & E. Wirsing, Über die Häufigkeit vollkommener Zahlen, Math. Ann., 133(1957) 431–438; MR 19, 837; see also 137(1959) 316-318; MR 21 #3389.

    MathSciNet  MATH  Google Scholar 

  • R. P. Jerrard & Nicholas Temperley, Almost perfect numbers, Math. Mag., 46(1973) 84–87.

    MathSciNet  MATH  Google Scholar 

  • H.-J. Kanold, Über mehrfach vollkommene Zahlen, J. reine angew. Math., 194(1955) 218–220.

    MathSciNet  MATH  Google Scholar 

  • H.-J. Kanold, Über mehrfach vollkommene Zahlen, J. reine angew. Math., II 197(1957) 82–96; MR 17, 238; 18, 873.

    MathSciNet  MATH  Google Scholar 

  • H.-J. Kanold, Über das harmonische Mittel der Teiler einer natürlichen Zahl, Math. Ann., 133(1957) 371–374.

    MathSciNet  Google Scholar 

  • H.-J. Kanold, Einige Bemerkungen über vollkommene und mehrfach vollkommene Zahlen, Abh. Braunschweig. Wiss. Ges., 42(1990/91) 49–55; MR 93c: 11002.

    MathSciNet  MATH  Google Scholar 

  • David G. Kendall, The scale of perfection, J. Appl. Probability, 19A(1982) 125–138; MR 83d: 10007.

    Google Scholar 

  • Masao Kishore, Odd triperfect numbers, Math. Comput, 42(1984) 231–233; MR 85d: 11009.

    MathSciNet  MATH  Google Scholar 

  • Masao Kishore, Odd triperfect numbers are divisible by eleven distinct prime factors, Math. Comput, 44(1985) 261–263; MR 86k:11007.

    MathSciNet  MATH  Google Scholar 

  • Masao Kishore, Odd triperfect numbers are divisible by twelve distinct prime factors, J. Autral Math. Soc. Ser. A, 42(1987) 173–182.

    MathSciNet  MATH  Google Scholar 

  • Masao Kishore, Odd integers N with 5 distinct prime factors for which 2 − 10−12 < σ (N)/N < 2 + 10−12, Math. Comput., 32(1978) 303–309.

    MathSciNet  MATH  Google Scholar 

  • M. S. Klamkin, Problem E1445*, Amer. Math. Monthly, 67(1960) 1028; see also 82(1975) 73.

    MathSciNet  Google Scholar 

  • Sidney Kravitz, A search for large weird numbers, J. Recreational Math., 9(1976–77) 82–85.

    Google Scholar 

  • Richard Laatsch, Measuring the abundancy of integers, Math. Mag., 59(1986) 84–92.

    MathSciNet  MATH  Google Scholar 

  • A. Mąkowski, Remarques sur les fonctions λ(n), ϕ(n) et θ(n), Mathesis, 69(1960) 302–303.

    MathSciNet  Google Scholar 

  • A. Mąkowski, Some equations involving the sum of divisors, Elem. Math., 34(1979) 82; MR 81b:10004.

    MathSciNet  MATH  Google Scholar 

  • Wayne L. McDaniel, On odd multiply perfect numbers, Boll. Un. Mat. Ital. (4), 3(1970) 185–190; MR 41 #6764.

    MathSciNet  MATH  Google Scholar 

  • W. H. Mills, On a conjecture of Ore, Proc. Number Theory Conf., Boulder CO, 1972, 142-146.

    Google Scholar 

  • D. Minoli, Issues in non-linear hyperperfect numbers, Math. Comput., 34(1980) 639–645; MR 82c: 10005.

    MathSciNet  MATH  Google Scholar 

  • Daniel Minoli & Robert Bear, Hyperperfect numbers, Pi Mu Epsilon J., 6#3(1974–75) 153-157.

    Google Scholar 

  • Shigeru Nakamura, On k-perfect numbers (Japanese), J. Tokyo Univ. Merc. Ma rine(Nat. Sci.), 33(1982) 43–50.

    Google Scholar 

  • Shigeru Nakamura, On some properties of σ(n), J. Tokyo Univ. Merc. Ma rine(Nat Sci.), 35(1984) 85–93.

    Google Scholar 

  • Shigeru Nakamura, On multiperfect numbers, (unpublished typescript).

    Google Scholar 

  • Oystein Ore, On the averages of the divisors of a number, Amer. Math. Monthly, 55(1948) 615–619.

    MathSciNet  MATH  Google Scholar 

  • Seppo Pajunen, On primitive weird numbers, A collection of manuscripts related to the Fibonacci sequence, 18th anniv. vol., Fibonacci Assoc, 162-166.

    Google Scholar 

  • Carl Pomerance, On a problem of Ore: Harmonic numbers (unpublished typescript); see Abstract *709-A5, Notices Amer. Math. Soc., 20(1973) A–648.

    Google Scholar 

  • Carl Pomerance, On multiply perfect numbers with a special property, Pacific J. Math., 57(1975) 511–517.

    MathSciNet  MATH  Google Scholar 

  • Carl Pomerance, On the congruences σ(n) = a mod n and n = a mod ϕ(n), Acta Arith., 26(1975) 265–272.

    MathSciNet  MATH  Google Scholar 

  • Paul Poulet, La Chasse aux Nombres, Fascicule I, Bruxelles, 1929, 9-27.

    Google Scholar 

  • Problem B-6, William Lowell Putnam Mathematical Competition, 1976-12-04.

    Google Scholar 

  • Problem 14, Abacus, 1(1984) 93.

    Google Scholar 

  • Herwig Reidlinger, Über ungerade mehrfach vollkommene Zahlen [On odd multiperfect numbers], ϖsterreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 192(1983) 237–266; MR 86d:11018.

    MathSciNet  MATH  Google Scholar 

  • Herman J. J. te Riele, Hyperperfect numbers with three different prime factors, Math. Comput., 36(1981) 297–298.

    MATH  Google Scholar 

  • Neville Robbins, A class of solutions of the equation σ(n) = 2n + t, Fibonacci Quart., 18(1980) 137–147 (misprints in solutions for t = 31, 84, 86).

    MathSciNet  Google Scholar 

  • M. Satyanarayana, Bounds of σ(N), Math. Student, 28(1960) 79–81.

    MathSciNet  MATH  Google Scholar 

  • H. N. Shapiro, Note on a theorem of Dickson, Bull. Amer. Math. Soc., 55(1949) 450–452.

    MathSciNet  MATH  Google Scholar 

  • H. N. Shapiro, On primitive abundant numbers, Comm. Pure Appl. Math., 21(1968) 111–118.

    MathSciNet  MATH  Google Scholar 

  • W. Sierpiński, Sur les nombres pseudoparfaits, Mat. Vesnik, 2(17)(1965) 212–213; MR 33 #7296.

    MathSciNet  Google Scholar 

  • W. Sierpiński, Elementary Theory of Numbers (ed. A. Schinzel), PWN-Polish Scientific Publishers, Warszawa, 1987, pp. 184–186.

    Google Scholar 

  • D. Suryanarayana, Quasi-perfect numbers II, Bull. Calcutta Math. Soc., 69(1977) 421–426; MR 80m: 10003.

    MathSciNet  MATH  Google Scholar 

  • Charles R. Wall, The density of abundant numbers, Abstract 73T-A184, Notices Amer. Math. Soc., 20(1973) A–472.

    Google Scholar 

  • Charles R. Wall, A Fibonacci-like sequence of abundant numbers, Fibonacci Quart., 22(1984) 349; MR 86d:11018.

    MathSciNet  MATH  Google Scholar 

  • Charles R. Wall, Phillip L. Crews & Donald B. Johnson, Density bounds for the sum of divisors function, Math. Comput., 26(1972) 773–777.

    MathSciNet  MATH  Google Scholar 

  • Motoji Yoshitake, Abundant numbers, sum of whose divisors is equal to an integer times the number itself (Japanese), Sūgaku Seminar, 18(1979) no. 3, 50–55.

    Google Scholar 

  • Andreas & Eleni Zachariou, Perfect, semi-perfect and Ore numbers, Bull. Soc. Math. Grèce(N.S.), 13(1972) 12–22; MR 50 #12905.

    MATH  Google Scholar 

  • K. Alladi, On arithmetic functions and divisors of higher order, J. Austral. Math. Soc. Ser. A, 23(1977) 9–27.

    MathSciNet  MATH  Google Scholar 

  • Graeme L. Cohen, On an integer’s infinitary divisors, Math. Comput., 54(1990) 395–411.

    MATH  Google Scholar 

  • Graeme Cohen & Peter Hagis, Arithmetic functions associated with the infinitary divisors of an integer, Internat. J. Math. Math. Sci., (to appear).

    Google Scholar 

  • J. L. DeBoer, On the non-existence of unitary perfect numbers of certain type, Pi Mu Epsilon J. (submitted).

    Google Scholar 

  • H. A. M. Frey, Über unitär perfekte Zahlen, Eiern. Math., 33(1978) 95–96; MR 81a: 10007.

    MathSciNet  MATH  Google Scholar 

  • S. W. Graham, Unitary perfect numbers with squarefree odd part, Fibonacci Quart., 27(1989) 317–322; MR 90i:11003.

    MathSciNet  MATH  Google Scholar 

  • Peter Hagis, Lower bounds for unitary multiperfect numbers, Fibonacci Quart., 22(1984) 140–143; MR 85j:11010.

    MathSciNet  MATH  Google Scholar 

  • Peter Hagis, Odd nonunitary perfect numbers, Fibonacci Quart., 28(1990) 11–15; MR 90k:11006.

    MathSciNet  MATH  Google Scholar 

  • Peter Hagis & Graeme Cohen, Infinitary harmonic numbers, Bull. Austral. Math. Soc, 41(1990) 151–158; MR 91d:11001.

    MathSciNet  Google Scholar 

  • József Sándor, On Euler’s arithmetical function, Proc. Alg. Conf. Braşov 1988, 121-125.

    Google Scholar 

  • V. Siva Rama Prasad & D. Ram Reddy, On unitary abundant numbers, Math. Student, 52(1984) 141–44 (1990) MR 91m:11002.

    MathSciNet  Google Scholar 

  • V. Siva Rama Prasad & D. Ram Reddy, On primitive unitary abundant numbers, Indian J. Pure Appl. Math., 21(1990) 40–44; MR 91f:11004.

    MathSciNet  MATH  Google Scholar 

  • M. V. Subbarao, Are there an infinity of unitary perfect numbers? Amer. Math. Monthly, 77(1970) 389–390.

    MathSciNet  Google Scholar 

  • M. V. Subbarao & D. Suryanarayana, Sums of the divisor and unitary divisor functions, J. reine angew. Math., 302(1978) 1–15; MR 80d:10069.

    MathSciNet  MATH  Google Scholar 

  • M. V. Subbarao & L. J. Warren, Unitary perfect numbers, Canad. Math. Bull., 9(1966) 147–153; MR 33 #3994.

    MathSciNet  MATH  Google Scholar 

  • M. V. Subbarao, T. J. Cook, R. S. Newberry & J. M. Weber, On unitary perfect numbers, Delta, 3#1 (Spring 1972) 22–26.

    MathSciNet  MATH  Google Scholar 

  • D. Suryanarayana, The number of k-ary divisors of an integer, Monatsh. Math., 72(1968) 445–450.

    MathSciNet  Google Scholar 

  • Charles R. Wall, The fifth unitary perfect number, Canad. Math. Bull, 18(1975) 115–122.

    MathSciNet  MATH  Google Scholar 

  • Charles R. Wall, The fifth unitary perfect number, Notices Amer. Math. Soc., 16(1969) 825.

    Google Scholar 

  • Charles R. Wall, Unitary harmonic numbers, Fibonacci Quart., 21(1983) 18–25.

    MathSciNet  MATH  Google Scholar 

  • Charles R. Wall, On the largest odd component of a unitary perfect number, Fibonacci Quart., 25(1987) 312–316; MR 88m:11005.

    MathSciNet  MATH  Google Scholar 

  • J. Alanen, O. Ore & J. G. Stemple, Systematic computations on amicable numbers, Math. Comput, 21(1967) 242–245; MR 36 #5058.

    MathSciNet  MATH  Google Scholar 

  • M. M. Artuhov, On some problems in the theory of amicable numbers (Russian), Acta Arith., 27(1975) 281–291.

    MathSciNet  Google Scholar 

  • S. Battiato, Über die Produktion von 37803 neuen befreundeten Zahlenpaaren mit der Brütermethode, Master’s thesis, Wuppertal, June 1988.

    Google Scholar 

  • S. Battiato & W. Borho, Are there odd amicable numbers not divisible by three? Math. Comput., 50(1988) 633–636; MR 89c:11015.

    MathSciNet  MATH  Google Scholar 

  • W. Borho, On Thabit ibn Kurrah’s formula for amicable numbers, Math. Comput., 26(1972) 571–578.

    MathSciNet  MATH  Google Scholar 

  • W. Borho, Befreundete Zahlen mit gegebener Primteileranzahl, Math. Ann., 209(1974) 183–193.

    MathSciNet  MATH  Google Scholar 

  • W. Borho, Eine Schranke für befreundete Zahlen mit gegebener Teileranzahl, Math. Nachr., 63(1974) 297–301.

    MathSciNet  MATH  Google Scholar 

  • W. Borho, Some large primes and amicable numbers, Math. Comput, 36(1981) 303–304.

    MathSciNet  MATH  Google Scholar 

  • W. Borho & H. Hoffmann, Breeding amicable numbers in abundance, Math. Comput, 46(1986) 281–293.

    MathSciNet  MATH  Google Scholar 

  • P. Bratley & J. McKay, More amicable numbers, Math. Comput., 22(1968) 677–678; MR 37 #1299.

    MathSciNet  MATH  Google Scholar 

  • P. Bratley, F. Lunnon & J. McKay, Amicable numbers and their distribution, Math. Comput., 24(1970) 431–432.

    MathSciNet  MATH  Google Scholar 

  • B. H. Brown, A new pair of amicable numbers, Amer. Math. Monthly, 46(1939) 345.

    MATH  Google Scholar 

  • Patrick Costello, Four new amicable pairs, Notices Amer. Math. Soc., 21 (1974) A–483.

    Google Scholar 

  • Patrick Costello, Amicable pairs of Euler’s first form, Notices Amer. Math. Soc., 22(1975) A–440.

    Google Scholar 

  • Patrick Costello, Amicable pairs of the form (i, 1), Math. Comput, 56(1991) 859–865; MR 91k: 11009.

    MathSciNet  MATH  Google Scholar 

  • P. Erdős, On amicable numbers, Publ. Math. Debrecen, 4(1955) 108–111; MR 16, 998.

    MathSciNet  Google Scholar 

  • P. Erdős & G. J. Rieger, Ein Nachtrag über befreundete Zahlen, J. reine angew. Math., 273(1975) 220.

    MathSciNet  Google Scholar 

  • E. B. Escott, Amicable numbers, Scripta Math., 12(1946) 61–72; MR 8, 135.

    MathSciNet  MATH  Google Scholar 

  • M. García, New amicable pairs, Scripta Math., 23(1957) 167–171; MR 20 #5158.

    MathSciNet  Google Scholar 

  • Mariano García, New unitary amicable couples, J. Recreational Math., 17 (1984-5) 32–35.

    MATH  Google Scholar 

  • Mariano García, K-fold isotopic amicable numbers, J. Recreational Math., 19(1987) 12–14 Mariano García, Some useful substitutions for finding amicable numbers (preprint March 1987).

    Google Scholar 

  • Mariano García, Favorable conditions for amicability, Hostos Community Coll. Math. J., New York, Spring 1989, 20–25.

    Google Scholar 

  • A. A. Gioia & A. M. Vaidya, Amicable numbers with opposite parity, Amer. Math. Monthly, 74(1967) 969–973.

    MathSciNet  Google Scholar 

  • A. A. Gioia & A. M. Vaidya, Amicable numbers with opposite parity, Amer. Math. Monthly, 75(1968) 386; MR 36 #3711, 37 #1306.

    MathSciNet  Google Scholar 

  • Peter Hagis, On relatively prime odd amicable numbers, Math. Comput., 23(1969) 539–543; MR 40 #85.

    MathSciNet  MATH  Google Scholar 

  • Peter Hagis, Lower bounds for relatively prime amicable numbers of opposite parity, Math. Comput, 24(1970) 963–968.

    MathSciNet  MATH  Google Scholar 

  • Peter Hagis, Relatively prime amicable numbers of opposite parity, Math. Mag., 43(1970) 14–20.

    MathSciNet  MATH  Google Scholar 

  • Peter Hagis, Unitary amicable numbers, Math. Comput., 25(1971) 915–918.

    MathSciNet  MATH  Google Scholar 

  • H.-J. Kanold, Über die Dichten der Mengen der vollkommenen und der befreundeten Zahlen, Math. Z., 61(1954) 180–185; MR 16, 337.

    MathSciNet  MATH  Google Scholar 

  • H.-J. Kanold, Über befreundete Zahlen I, Math. Nachr., 9(1953) 243–248.

    MathSciNet  MATH  Google Scholar 

  • H.-J. Kanold, Über befreundete Zahlen I, Math. Nachr., 10 (1953) 99–111; MR 15, 506.

    MathSciNet  MATH  Google Scholar 

  • H.-J. Kanold, Über befreundete Zahlen III, J. reine angew. Math., 234(1969) 207–215; MR 39 #122.

    MathSciNet  MATH  Google Scholar 

  • E. J. Lee, Amicable numbers and the bilinear diophantine equation, Math. Comput, 22(1968) 181–187; MR 37 #142.

    MATH  Google Scholar 

  • E. J. Lee, On divisibility by nine of the sums of even amicable pairs, Math. Comput, 23(1969) 545–548; MR 40 #1328.

    MATH  Google Scholar 

  • E. J. Lee & J. S. Madachy, The history and discovery of amicable numbers, part 1, J. Recreational Math., 5(1972) 77–93; part 2, 153-173; part 3, 231-249.

    MathSciNet  MATH  Google Scholar 

  • O. Ore, Number Theory and its History, McGraw-Hill, New York, 1948, p. 89.

    MATH  Google Scholar 

  • Carl Pomerance, On the distribution of amicable numbers, J. reine angew. Math., 293/294(1977) 217–222.

    MathSciNet  Google Scholar 

  • Carl Pomerance, On the distribution of amicable numbers, J. reine angew. Math., II 325(1981) 183–188; MR 56 #5402, 82m: 10012.

    MathSciNet  MATH  Google Scholar 

  • P. Poulet, 43 new couples of amicable numbers, Scripta Math., 14(1948) 77.

    MATH  Google Scholar 

  • H. J. J. te Riele, Four large amicable pairs, Math. Comput, 28(1974) 309–312.

    MATH  Google Scholar 

  • H. J. J. te Riele, On generating new amicable pairs from given amicable pairs, Math. Comput, 42(1984) 219–223.

    MATH  Google Scholar 

  • Herman J. J. te Riele, New very large amicable pairs, in Number Theory Noord wijkerhout 1983, Springer Lecture Notes in Math., 1068(1984) 210–215.

    Google Scholar 

  • H. J. J. te Riele, Computation of all the amicable pairs below 1010, Math. Comput., 47(1986) 361–368 & S9-S40.

    MATH  Google Scholar 

  • H. J. J. te Riele, A new method for finding amicable pairs, in Mathematics of Computation 1943–1993 (Vancouver, 1993), Proc. Sympos. Appl. Math. 43, Amer. Math. Soc., Providence RI, 1994.

    Google Scholar 

  • H. J. J. te Riele, W. Borho, S. Battiato, H. Hoffmann & E.J. Lee, Table of Amicable Pairs between 1010 and 1052, Centrum voor Wiskunde en Informatica, Note NM-N8603, Stichting Math. Centrum, Amsterdam, 1986.

    Google Scholar 

  • Dale Woods, Construction of amicable pairs, #789-10-21, Abstracts Amer. Math. Soc., 3(1982) 223.

    Google Scholar 

  • Walter E. Beck & Rudolph M. Najar, More reduced amicable pairs, Fibonacci Quart., 15(1977) 331–332; Zbl 389.10004.

    MathSciNet  MATH  Google Scholar 

  • Walter E. Beck & Rudolph M. Najar, Fixed points of certain arithmetic functions, Fibonacci Quart., 15(1977) 337–342; Zbl 389.10005.

    MathSciNet  MATH  Google Scholar 

  • Peter Hagis & Graham Lord, Quasi-amicable numbers, Math. Comput., 31(1977) 608–611; MR 55 #7902; Zbl 355.10010.

    MathSciNet  MATH  Google Scholar 

  • M. Lal & A. Forbes, A note on Chowla’s function, Math. Comput., 25(1971) 923–925; MR 45 #6737; Zbl. 245.10004.

    MathSciNet  MATH  Google Scholar 

  • Andrzej Mąkowski, On some equations involving functions ϕ(n) and σ(n), Amer. Math. Monthly, 67(1960) 668–670.

    MathSciNet  MATH  Google Scholar 

  • Andrzej Mąkowski, On some equations involving functions ϕ(n) and σ(n), Amer. Math. Monthly, 68(1961) 650; MR 24 #A76.

    MathSciNet  Google Scholar 

  • Jack Alanen, Empirical study of aliquot series, Math. Rep., 133 Stichting Math. Centrum Amsterdam, 1972.

    Google Scholar 

  • Jack Alanen, Empirical study of aliquot series, Math. Comput, 28(1974) 878–880.

    Google Scholar 

  • E. Catalan, Propositions et questions diverses, Bull Soc. Math. France, 16 (1887–88) 128–129.

    MathSciNet  Google Scholar 

  • John Stanley Devitt, Aliquot Sequences, MSc thesis, The Univ. of Calgary, 1976.

    Google Scholar 

  • John Stanley Devitt, Math. Comput, 32(1978) 942–943.

    Google Scholar 

  • J. S. Devitt, R. K. Guy & J. L. Selfridge, Third report on aliquot sequences, Congr. Numer. XVIII, Proc. 6th Manitoba Conf. Numer. Math., 1976, 177-204; MR 80d:10001.

    Google Scholar 

  • L. E. Dickson, Theorems and tables on the sum of the divisors of a number, Quart. J. Math., 44(1913) 264–296.

    MATH  Google Scholar 

  • Paul Erdős, On asymptotic properties of aliquot sequences, Math. Comput., 30(1976) 641–645.

    Google Scholar 

  • Andrew W. P. Guy & Richard K. Guy, A record aliquot sequence, in Mathematics of Computation 1943–1993 (Vancouver, 1993), Proc. Sympos. Appl. Math., (1994) Amer. Math. Soc., Providence RI, 1984.

    Google Scholar 

  • Richard K. Guy, Aliquot sequences, in Number Theory and Algebra, Academic Press, 1977, 111-118; MR 57 #223; Zbl. 367.10007.

    Google Scholar 

  • Richard K. Guy & J. L. Selfridge, Interim report on aliquot sequences, Congr. Numer. V, Proc. Conf. Numer. Math., Winnipeg, 1971, 557-580; MR 49 #194; Zbl. 266.10006.

    Google Scholar 

  • Richard K. Guy & J. L. Selfridge, Combined report on aliquot sequences, The Univ. of Calgary Math. Res. Rep. 225(May, 1974).

    Google Scholar 

  • Richard K. Guy & J. L. Selfridge, What drives an aliquot sequence? Math. Comput, 29(1975) 101–107; MR 52 #5542; Zbl. 296.10007. Corrigendum.

    MathSciNet  MATH  Google Scholar 

  • Richard K. Guy & J. L. Selfridge, What drives an aliquot sequence? Math. Comput, 34(1980) 319–321; MR 81f:10008; Zbl. 423.10005.

    MathSciNet  MATH  Google Scholar 

  • Richard K. Guy & M. R. Williams, Aliquot sequences near 1012, Congr. Numer. XII, Proc. 4th Manitoba Conf. Numer. Math., 1974, 387-406; MR 52 #242; Zbl. 359.10007.

    Google Scholar 

  • Richard K. Guy, D. H. Lehmer, J. L. Selfridge & M. C. Wunderlich, Second report on aliquot sequences, Congr. Numer. IX, Proc. 3rd Manitoba Conf. Numer. Math., 1973, 357-368; MR 50 #4455; Zbl. 325.10007.

    Google Scholar 

  • H. W. Lenstra, Problem 6064, Amer. Math. Monthly, 82(1975) 1016.

    MathSciNet  Google Scholar 

  • H. W. Lenstra, Problem 6064, Amer. Math. Monthly, 84 (1977) 580.

    MathSciNet  Google Scholar 

  • G. Aaron Paxson, Aliquot sequences (preliminary report), Amer. Math. Monthly, 63(1956) 614.

    MathSciNet  Google Scholar 

  • G. Aaron Paxson, Aliquot sequences (preliminary report), Math. Comput., 26(1972) 807–809.

    Google Scholar 

  • P. Poulet, La chasse aux nombres, Fascicule I, Bruxelles, 1929.

    Google Scholar 

  • P. Poulet, Nouvelles suites arithmétiques, Sphinx, Deuxième Année (1932) 53-54.

    Google Scholar 

  • H. J. J. te Riele, A note on the Catalan-Dickson conjecture, Math. Comput., 27(1973) 189–192; MR 48 #3869; Zbl. 255.10008.

    MATH  Google Scholar 

  • H. J. J. te Riele, Iteration of number theoretic functions, Report NN 30/83, Math. Centrum, Amsterdam, 1983.

    Google Scholar 

  • Walter Borho, Über die Fixpunkte der k-fach iterierten Teilersummenfunktion, Mitt Math. Gesellsch. Hamburg, 9(1969) 34–48; MR 40 #7189.

    MathSciNet  MATH  Google Scholar 

  • Achim Flammenkamp, New sociable numbers, Math. Comput., 56(1991) 871–873.

    MathSciNet  MATH  Google Scholar 

  • David Moews & Paul C. Moews, A search for aliquot cycles below 1010, Math. Comput., 57(1991) 849–855; MR 92e:11151.

    MathSciNet  MATH  Google Scholar 

  • David Moews & Paul C. Moews, A search for aliquot cycles and amicable pairs, Math. Comput, 61(1993) 935–938.

    MathSciNet  MATH  Google Scholar 

  • Paul Erdős, A mélange of simply posed conjectures with frustratingly elusive solutions, Math. Mag., 52(1979) 67–70.

    MathSciNet  Google Scholar 

  • P. Erdős, Problems and results in number theory and graph theory, Congressus Numerantium 27, Proc. 9th Manitoba Conf. Numerical Math. Comput., 1979, 3-21.

    Google Scholar 

  • Richard K. Guy & Marvin C. Wunderlich, Computing unitary aliquot sequences — a preliminary report, Congressus Numerantium 27, Proc. 9th Manitoba Conf. Numerical Math. Comput., 1979, 257-270.

    Google Scholar 

  • P. Hagis, Unitary amicable numbers, Math. Comput, 25(1971) 915–918; MR 45 #8599.

    MathSciNet  MATH  Google Scholar 

  • Peter Hagis, Unitary hyperperfect numbers, Math. Comput., 36(1981) 299–301.

    MathSciNet  MATH  Google Scholar 

  • M. Lal, G. Tiller & T. Summers, Unitary sociable numbers, Congressus Numerantium 7, Proc. 2nd Manitoba Conf. Numerical Math., 1972, 211-216: MR 50 #4471.

    Google Scholar 

  • H. J. J. te Riele, Unitary Aliquot Sequences, MR139/72, Mathematisch Centrum, Amsterdam, 1972; reviewed Math. Comput., 32(1978) 944–945; Zbl. 251. 10008.

    Google Scholar 

  • H. J. J. te Riele, Further Results on Unitary Aliquot Sequences, NW12/73, Mathematisch Centrum, Amsterdam, 1973; reviewed Math. Comput, 32(1978) 945.

    Google Scholar 

  • H. J. J. te Riele, A Theoretical and Computational Study of Generalized Aliquot Sequences, MCT72, Mathematisch Centrum, Amsterdam, 1976; reviewed Math. Comput, 32(1978) 945-946; MR 58 #27716.

    Google Scholar 

  • C. R. Wall, Topics related to the sum of unitary divisors of an integer, PhD thesis, Univ. of Tennessee, 1970.

    Google Scholar 

  • Dieter Bode, Über eine Verallgemeinerung der volkommenen Zahlen, Dissertation, Braunschweig, 1971.

    Google Scholar 

  • P. Erdős, Some remarks on the iterates of the ϕ and σ functions, Colloq. Math., 17(1967) 195–202.

    MathSciNet  Google Scholar 

  • J. L. Hunsucker & C. Pomerance, There are no odd super perfect numbers less than 7 · 1024, Indian J. Math., 17(1975) 107–120; MR 82b:10010.

    MathSciNet  MATH  Google Scholar 

  • H.-J. Kanold, Über “Super perfect numbers,” Elem. Math., 24(1969) 61–62; MR 39 #5463.

    MathSciNet  MATH  Google Scholar 

  • Graham Lord, Even perfect and superperfect numbers, Elem. Math., 30(1975) 87–88.

    MathSciNet  MATH  Google Scholar 

  • Helmut Maier, On the third iterates of the ϕ-and σ-functions, Colloq. Math., 49(1984) 123–130.

    MathSciNet  MATH  Google Scholar 

  • Andrzej Mąkowski, On two conjectures of Schinzel, Elem. Math., 31(1976) 140–141.

    MathSciNet  MATH  Google Scholar 

  • A. Mąkowski & A. Schinzel, On the functions ϕ(n) and σ (n), Colloq. Math., 13(1964-65) 95–99.

    MathSciNet  MATH  Google Scholar 

  • A. Schinzel, Ungelöste Probleme Nr. 30, Elem. Math., 14(1959) 60–61.

    MathSciNet  Google Scholar 

  • D. Suryanarayana, Super perfect numbers, Elem. Math., 24(1969) 16–17; MR 39 #5706.

    MathSciNet  MATH  Google Scholar 

  • D. Suryanarayana, There is no superperfect number of the form p , Elem. Math., 28(1973) 148–150; MR 48 #8374.

    MathSciNet  MATH  Google Scholar 

  • P. Erdős, Über die Zahlen der Form σ(n)-n und n − ϕ(n), Elem. Math., 28(1973) 83–86; MR 49 #2502.

    MathSciNet  Google Scholar 

  • Paul Erdős, Some unconventional problems in number theory, Astérisque, 61(1979) 73–82; MR 81h: 10001.

    Google Scholar 

  • P. Erdős, Remarks on number theory II: some problems on the σ function, Acta Arith., 5(1959) 171–177; MR 21 #6348.

    MathSciNet  Google Scholar 

  • Richard K. Guy & Daniel Shanks, A constructed solution of σ(n) = σ(n + 1), Fibonacci Quart., 12(1974) 299; MR 50 #219.

    MathSciNet  MATH  Google Scholar 

  • John L. Hunsucker, Jack Nebb & Robert E. Stearns, Computational results concerning some equations involving σ(n), Math. Student, 41(1973) 285–289.

    MathSciNet  Google Scholar 

  • W. E. Mientka & R. L. Vogt, Computational results relating to problems concerning σ(n), Mat. Vesnik, 7(1970) 35–36.

    MathSciNet  Google Scholar 

  • Peter B. Borwein, On the irrationality of, J. Number Theory, 37(1991) 253–259.

    MathSciNet  MATH  Google Scholar 

  • Peter B. Borwein, On the irrationality of certain series, Math. Proc. Cambridge Philos. Soc., 112(1992) 141–146; MR 93g:11074.

    MathSciNet  MATH  Google Scholar 

  • P. Erdős, On arithmetical properties of Lambert series, J. Indian Math. Soc.(N.S.) 12(1948) 63–66.

    MathSciNet  Google Scholar 

  • P. Erdős, On the irrationality of certain series: problems and results, in New Advances in Transcendence Theory, Cambridge Univ. Press, 1988, pp. 102-109.

    Google Scholar 

  • P. Erdős & M. Kac, Problem 4518, Amer. Math. Monthly, 60(1953) 47. Solution R. Breusch, 61(1954) 264-265.

    MathSciNet  Google Scholar 

  • M. Sugunamma, PhD thesis, Sri Venkataswara Univ., 1969.

    Google Scholar 

  • N. C. Ankeny, E. Artin & S. Chowla, The class-number of real quadratic number fields, Ann. of Math.(2), 56(1952) 479–493; MR 14, 251.

    MathSciNet  MATH  Google Scholar 

  • B. D. Beach, H. C. Williams & C. R. Zarnke, Some computer results on units in quadratic and cubic fields, Proc. 25th Summer Meet. Canad. Math. Congress, Lakehead, 1971, 609-648; MR 49 #2656.

    Google Scholar 

  • David Drazin & Robert Gilmer, Complements and comments, Amer. Math. Monthly, 78(1971) 1104–1106 (esp. p. 1106).

    Google Scholar 

  • W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math., 92(1988) 73–90; MR 89d:11033.

    MathSciNet  MATH  Google Scholar 

  • P. Erdős, Problems and results on consecutive integers, Eureka, 38(1975-76) 3–8.

    Google Scholar 

  • P. Erdős & G. Szekeres, Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem, Acta Litt. Sci. Szeged, 7(1934) 95–102; Zbl. 10, 294.

    Google Scholar 

  • S. W. Golomb, Powerful numbers, Amer. Math. Monthly, 77(1970) 848–852; MR 42 #1780.

    MathSciNet  MATH  Google Scholar 

  • D. R. Heath-Brown, Ternary quadratic forms and sums of three square-full numbers, Séminaire de Théorie des Nombres, Paris, 1986–87, Birkhäuser, Boston, 1988; MR 91b:11031.

    Google Scholar 

  • D. R. Heath-Brown, Sums of three square-full numbers, in Number Theory, I (Budapest, 1987), Colloq. Math. Soc. János Bolyai, 51(1990) 163–171; MR 91i:11036.

    MathSciNet  Google Scholar 

  • D. R. Heath-Brown, Square-full numbers in short intervals, Math. Proc. Cambridge Philos. Soc., 110(1991) 1–3; MR 92c:11090.

    MathSciNet  MATH  Google Scholar 

  • Aleksander Ivić, On the asymptotic formulas for powerful numbers, Publ. Math. Inst. Beograd (N.S.), 23(37)(1978) 85–94; MR 58 #21977.

    Google Scholar 

  • A. Ivić & P. Shiu, The distribution of powerful integers, Illinois J. Math., 26(1982) 576–590; MR 84a: 10047.

    MathSciNet  MATH  Google Scholar 

  • H. Iwaniec, Fourier coefficients of modular forms of half-integral weight, Invent. Math., 87(1987) 385–401; MR 88b:11024.

    MathSciNet  MATH  Google Scholar 

  • C.-H. Jia, On square-full numbers in short intervals, Acta Math. Sinica (N.S.) 5(1987) 614–621.

    Google Scholar 

  • Liu Hong-Quan, On square-full numbers in short intervals, Acta Math. Sinica (N.S.), 6(1990) 148–164; MR 91g:11105.

    MathSciNet  MATH  Google Scholar 

  • Andrzej Mąkowski, On a problem of Golomb on powerful numbers, Amer. Math. Monthly, 79(1972) 761.

    MathSciNet  MATH  Google Scholar 

  • Andrzej Mąkowski, Remarks on some problems in the elementary theory of numbers, Acta Math. Univ. Comenian., 50/51(1987) 277–281; MR 90e:11022.

    Google Scholar 

  • Wayne L. McDaniel, Representations of every integer as the difference of powerful numbers, Fibonacci Quart., 20(1982) 85–87.

    MathSciNet  MATH  Google Scholar 

  • Richard A. Mollin, The power of powerful numbers, Internat. J. Math. Math. Sci., 10(1987) 125–130; MR 88e:11008.

    MathSciNet  MATH  Google Scholar 

  • Richard A. Mollin & P. Gary Walsh, On non-square powerful numbers, Fibonacci Quart., 25(1987) 34–37; MR 88f:11006.

    MathSciNet  MATH  Google Scholar 

  • Richard A. Mollin & P. Gary Walsh, On powerful numbers, Internat. J. Math. Math. Sci., 9(1986) 801–806; MR 88f:11005.

    MathSciNet  MATH  Google Scholar 

  • Richard A. Mollin & P. Gary Walsh, A note on powerful numbers, quadratic fields and the Pellian, CR Math. Rep. Acad. Sci. Canada, 8(1986) 109–114; MR 87g:11020.

    MATH  Google Scholar 

  • Richard A. Mollin & P. Gary Walsh, Proper differences of non-square powerful numbers, CR Math. Rep. Acad. Sci. Canada, 10(1988) 71–76; MR 89e: 11003.

    MATH  Google Scholar 

  • L. J. Mordell, On a pellian equation conjecture, Acta Arith., 6(1960) 137–144; MR 22 #9470.

    MathSciNet  MATH  Google Scholar 

  • B. Z. Moroz, On representation of large integers by integral ternary positive definite quadratic forms, Journées Arithmétiques, Geneva.

    Google Scholar 

  • Abderrahmane Nitaj, On a conjecture of Erdős on 3-powerful numbers, London Math. Soc., (submitted).

    Google Scholar 

  • Peter Georg Schmidt, On the number of square-full integers in short intervals, Acta Arith., 50(1988) 195–201.

    MathSciNet  MATH  Google Scholar 

  • Peter Georg Schmidt, On the number of square-full integers in short intervals, Acta Arith., 54(1990) 251–254; MR 89f:11131.

    MathSciNet  MATH  Google Scholar 

  • W. A. Sentance, Occurrences of consecutive odd powerful numbers, Amer. Math. Monthly, 88(1981) 272–274.

    MathSciNet  MATH  Google Scholar 

  • P. Shiu, On square-full integers in a short interval, Glasgow Math. J., 25(1984) 127–134.

    MathSciNet  MATH  Google Scholar 

  • P. Shiu, The distribution of cube-full numbers, Glasgow Math. J., 33(1991) 287–295. MR 92g:11091.

    MathSciNet  MATH  Google Scholar 

  • P. Shiu, Cube-full numbers in short intervals, Math. Proc. Cambridge Philos. Soc, 112(1992) 1–5; MR 93d:11097.

    MathSciNet  MATH  Google Scholar 

  • A. J. Stephens & H. C. Williams, Some computational results on a problem concerning powerful numbers, Math. Comput., 50(1988) 619–632.

    MathSciNet  MATH  Google Scholar 

  • D. Suryanarayana, On the distribution of some generalized square-full integers, Pacific J. Math., 72(1977) 547–555; MR 56 #11933.

    MathSciNet  MATH  Google Scholar 

  • D. Suryanarayana & R. Sitaramachandra Rao, The distribution of square-full integers, Ark. Mat., 11(1973) 195–201; MR 49 #8948.

    MathSciNet  MATH  Google Scholar 

  • Charles Vanden Eynden, Differences between squares and powerful numbers, *816-ll-305, Abstracts Amer. Math. Soc., 6(1985) 20.

    Google Scholar 

  • David T. Walker, Consecutive integer pairs of powerful numbers and related Dio phantine equations, Fibonacci Quart., 14(1976) 111–116; MR 53 #13107.

    MathSciNet  MATH  Google Scholar 

  • Yuan Ping-Zhi, On a conjecture of Golomb on powerful numbers (Chinese. English summary), J. Math. Res. Exposition, 9(1989) 453–456; MR 91c:11009.

    MathSciNet  Google Scholar 

  • E. G. Straus & M. V. Subbarao, On exponential divisors, Duke Math. J., 41(1974) 465–471; MR 50 #2053.

    MathSciNet  MATH  Google Scholar 

  • M. V. Subbarao, On some arithmetic convolutions, Proc. Conf. Kalamazoo MI, 1971, Springer Lecture Notes in Math., 251(1972) 247–271; MR 49 #2510.

    MathSciNet  Google Scholar 

  • M. V. Subbarao & D. Suryanarayana, Exponentially perfect and unitary perfect numbers, Notices Amer. Math. Soc., 18(1971) 798.

    Google Scholar 

  • P. Erdős, Problem P. 307, Canad. Math. Bull., 24(1981) 252.

    Google Scholar 

  • P. Erdős & L. Mirsky, The distribution of values of the divisor function d(n), Proc. London Math. Soc. (3), 2(1952) 257–271.

    MathSciNet  Google Scholar 

  • P. Erdős, C. Pomerance & A. Sárközy, On locally repeated values of certain arithmetic functions, II, Acta Math. Hungarica, 49(1987) 251–259; MR 88c:11008.

    Google Scholar 

  • J. Fabrykowski & M. V. Subbarao, Extension of a result of Erdős concerning the divisor function, Utilitas Math., 38(1990) 175–181; MR 92d:11101.

    MathSciNet  MATH  Google Scholar 

  • D. R. Heath-Brown, A parity problem from sieve theory, Mathematika, 29(1982) 1–6 (esp. p. 6).

    MathSciNet  MATH  Google Scholar 

  • D. R. Heath-Brown, The divisor function at consecutive integers, Mathematika, 31(1984) 141–149.

    MathSciNet  MATH  Google Scholar 

  • Adolf Hildebrand, The divisors function at consecutive integers, Pacific J. Math., 129(1987) 307–319; MR 88k:11062.

    MathSciNet  MATH  Google Scholar 

  • M. Nair & P. Shiu, On some results of Erdős and Mirsky, J. London Math. Sac. (2), 22(1980) 197–203.

    MathSciNet  MATH  Google Scholar 

  • M. Nair & P. Shiu, On some results of Erdős and Mirsky, J. London Math. Sac. 17(1978) 228–230.

    Google Scholar 

  • C. Pinner, M.Sc. thesis, Oxford, 1988.

    Google Scholar 

  • A. Schinzel, Sur un problème concernant le nombre de diviseurs d’un nombre naturel, Bull. Acad. Polon. Sci. Ser. sci. math. astr. phys., 6(1958) 165–167.

    MathSciNet  MATH  Google Scholar 

  • A. Schinzel & W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arith., 4(1958) 185–208.

    MathSciNet  MATH  Google Scholar 

  • W. Sierpiński, Sur une question concernant le nombre de diviseurs premiers d’un nombre naturel, Colloq. Math., 6(1958) 209–210.

    MathSciNet  MATH  Google Scholar 

  • Jerzy Browkin & Juliusz Brzeziński, Some remarks on the abc-conjecture, Math. Comput., (to appear).

    Google Scholar 

  • Noam D. Elkies, ABC implies Mordell, Internat Math. Res. Notices, 1991 no. 7, 99-109; MR 93d: 11064.

    Google Scholar 

  • Serge Lang, Old and new conjectured diophantine inequalities, Bull. Amer. Math. Soc., 23(1990) 37–75.

    MathSciNet  MATH  Google Scholar 

  • A. Mąkowski, On a problem of Erdős, Enseignement Math. (2), 14(1968) 193.

    MathSciNet  MATH  Google Scholar 

  • Abderrahmane Nitaj, 1993 preprint.

    Google Scholar 

  • András Sárközy, On sums a + b and numbers of the form ab +1 with many prime factors, Osterreichisch-Ungarisch-Slowakisches Kolloquium über Zahlentheorie (Maria Trost, 1992), 141-154, Grazer Math. Ber., 318 Karl-Pranzens-Univ. Graz, 1993.

    Google Scholar 

  • C. L. Stewart & Yu Kun-Rui, On the abc conjecture, Math. Ann., 291(1991) 225–230; MR 92k: 11037.

    MathSciNet  MATH  Google Scholar 

  • R. Tijdeman, The number of solutions of Diophantine equations, in Number Theory, II (Budapest, 1987), Colloq. Math. Soc. János Bolyai, 51(1990) 671–696.

    MathSciNet  Google Scholar 

  • Ingemar Jönsson, On certain primes of Mersenne-type, Nordisk Tidskr. Informationsbehandling (BIT), 12 (1972) 117–118; MR 47 #120.

    MathSciNet  MATH  Google Scholar 

  • Wilfrid Keller, New Cullen primes, (92-11-20 preprint).

    Google Scholar 

  • Hans Riesel, En Bok om Primtal (Swedish), Lund, 1968; supplement Stockholm, 1977; MR 42 #4507, 58 #10681.

    Google Scholar 

  • Robert Baillie, New primes of the form k · 2n + 1, Math. Comput, 33(1979) 1333–1336; MR 80h: 10009.

    MathSciNet  MATH  Google Scholar 

  • Robert Baillie, G. V. Cormack & H. C. Williams, The problem of Sierpiński concerning k · 2n + l, Math. Comput, 37(1981) 229–231.

    MathSciNet  MATH  Google Scholar 

  • Robert Baillie, G. V. Cormack & H. C. Williams, The problem of Sierpiński concerning k · 2n + l, Math. Comput, 39(1982) 308.

    MathSciNet  MATH  Google Scholar 

  • Wieb Bosma, Explicit primality criteria for h · 2 k ± 1, Math. Comput., 61(1993) 97–109.

    MathSciNet  MATH  Google Scholar 

  • D. A. Buell & J. Young, Some large primes and the Sierpiński problem, SRC Technical Report 88-004, Supercomputing Research Center, Lanham MD, May 1988.

    Google Scholar 

  • G. V. Cormack & H. C. Williams, Some very large primes of the form k · 2n + 1, Math. Comput, 35(1980) 1419–1421; MR 81i:10011; corrigendum, Wilfrid Keller, 38(1982) 335; MR 82k:10011.

    MathSciNet  MATH  Google Scholar 

  • Paul Erdős & Andrew M. Odlyzko, On the density of odd integers of the form (p − l)2−n and related questions, J. Number Theory, 11(1979) 257–263; MR 80i: 10077.

    MathSciNet  Google Scholar 

  • G. Jaeschke, On the smallest k such that all k · 2 N + 1 are composite, Math. Comput., 40(1983) 381–384; MR 84k:10006; corrigendum, 45(1985) 637; MR 87b: 11009.

    MathSciNet  MATH  Google Scholar 

  • Wilfrid Keller, Factors of Fermat numbers and large primes of the form k · 2n + 1, Math. Comput, 41(1983) 661–673; MR 85b:11119; II (incomplete draft, 92-02-19).

    MATH  Google Scholar 

  • Wilfrid Keller, Woher kommen die größten derzeit bekannten Primzahlen? Mitt. Math. Ges. Hamburg, 12(1991) 211–229;M# 92j:11006.

    MathSciNet  MATH  Google Scholar 

  • N. S. Mendelsohn, The equation ϕ(x) = k, Math. Mag., 49(1976) 37–39; MR 53 #252.

    MathSciNet  MATH  Google Scholar 

  • Raphael M. Robinson, A report on primes of the form k · 2n +1 and on factors of Fermat numbers, Proc. Amer. Math. Soc., 9(1958) 673–681; MR 20 #3097.

    MathSciNet  MATH  Google Scholar 

  • J. L. Selfridge, Solution of problem 4995, Amer. Math. Monthly, 70(1963) 101.

    MathSciNet  Google Scholar 

  • W. Sierpiński, Sur un problème concernant les nombres k ·2 n + 1, Elem. Math., 15(1960) 73–74; MR 22 #7983; corrigendum, 17(1962) 85.

    MathSciNet  MATH  Google Scholar 

  • W. Sierpiński, 250 Problems in Elementary Number Theory, Elsevier, New York, 1970, Problem 118, pp. 10 & 64.

    MATH  Google Scholar 

  • R. G. Stanton & H. C. Williams, Further results on covering of the integers 1 + k2 n by primes, Combinatorial Math. VIII, Lecture Notes in Math., 884, Springer-Verlag, Berlin-New York, 1980, 107–114.

    Google Scholar 

  • K. Alladi & C. Grinstead, On the decomposition of n! into prime powers, J. Number Theory, 9(1977) 452–458; MR 56 #11934.

    MathSciNet  MATH  Google Scholar 

  • P. Erdős, Some problems in number theory, Computers in Number Theory, Academic Press, London & New York, 1971, 405–414.

    Google Scholar 

  • Earl Ecklund & Roger Eggleton, Prime factors of consecutive integers, Amer. Math. Monthly, 79(1972) 1082–1089.

    MathSciNet  MATH  Google Scholar 

  • E. Ecklund, R. Eggleton, P. Erdős & J. L. Selfridge, On the prime factorization of binomial coefficients, J. Austral. Math. Soc. Ser. A, 26(1978) 257–269; MR 80e:10009.

    MathSciNet  MATH  Google Scholar 

  • P. Erdős, Problems and results on number theoretic properties of consecutive integers and related questions, Congressus Numerantium XVI (Proc. 5th Manitoba Conf. Numer. Math. 1975), 25-44.

    Google Scholar 

  • P. Erdős & R. L. Graham, On products of factorials, Bull. Inst. Math. Acad. Sinica, Taiwan, 4(1976) 337–355.

    Google Scholar 

  • Driss Abouabdillah Sz Jean M. Turgeon, On a 1937 problem of Paul Erdős concerning certain finite sequences of integers none divisible by another, Proc. 15th S.E. Conf. Combin. Graph Theory Comput., Baton Rouge, 1984, Congr. Numer., 43(1984) 19–22; MR 86h:11020.

    MathSciNet  Google Scholar 

  • P. Erdős, On a problem in elementary number theory and a combinatorial problem, Math. Comput, (1964) 644-646; MR 30 #1087.

    Google Scholar 

  • Kenneth Lebensold, A divisibility problem, Studies in Appl. Math., 56(1976-77) 291–294; MR 58 #21639.

    MathSciNet  Google Scholar 

  • Emma Lehmer, Solution to Problem 3820, Amer. Math. Monthly, 46(1939) 240–241.

    MathSciNet  Google Scholar 

  • P. T. Bateman & R. M. Stemmler, Waring’s problem for algebraic number fields and primes of the form (p r − 1)/(p d − 1), Illinois J. Math., 6(1962) 142–156; MR 25 #2059.

    MathSciNet  MATH  Google Scholar 

  • Ted Chinburg & Melvin Henriksen, Sums of kth powers in the ring of polynomials with integer coefficients, Bull. Amer. Math. Soc., 81(1975) 107–110; MR 51 #421.

    MathSciNet  MATH  Google Scholar 

  • Ted Chinburg & Melvin Henriksen, Sums of kth powers in the ring of polynomials with integer coefficients, Acta Arith., 29(1976) 227–250; MR 53 #7942.

    MathSciNet  MATH  Google Scholar 

  • A. Mąkowski & A. Schinzel, Sur l’équation indéterminée de R. Goormaghtigh, Mathesis, 68(1959) 128–142; MR 22 # 9472.

    MathSciNet  MATH  Google Scholar 

  • A. Mąkowski & A. Schinzel, Sur l’équation indéterminée de R. Goormaghtigh, Mathesis, 70(1965) 94–96.

    MATH  Google Scholar 

  • N. M. Stephens, On the Feit-Thompson conjecture, Math. Comput., 25(1971) 625; MR 45 #6738.

    MathSciNet  MATH  Google Scholar 

  • S. L. G. Choi, The largest subset in [l, n] whose integers have pairwise I.c.m. not exceeding n, Mathematika, 19(1972) 221–230; 47 #8461.

    MathSciNet  MATH  Google Scholar 

  • S. L. G. Choi, On sequences containing at most three pairwise coprime integers, Trans. Amer. Math. Soc., 183(1973) 437–440; 48 #6052.

    MathSciNet  MATH  Google Scholar 

  • P. Erdős, Extremal problems in number theory, Proc. Sympos. Pure Math. Amer. Math. Soc., 8(1965) 181–189; MR 30 #4740.

    Google Scholar 

  • P. Erdős & J. L. Selfridge, Some problems on the prime factors of consecutive integers, Illinois J. Math., 11(1967) 428–430.

    MathSciNet  Google Scholar 

  • A. Schinzel, Unsolved problem 31, Elem. Math., 14(1959) 82–83.

    MathSciNet  Google Scholar 

  • Alfred Brauer, On a property of k consecutive integers, Bull. Amer. Math. Soc., 47(1941) 328–331; MR 2, 248.

    MathSciNet  Google Scholar 

  • Ronald J. Evans, On blocks of N consecutive integers, Amer. Math. Monthly, 76(1969) 48–49.

    MathSciNet  MATH  Google Scholar 

  • Ronald J. Evans, On N consecutive integers in an arithmetic progression, Acta Sci. Math. Univ. Szeged, 33(1972) 295–296; MR 47 #8408.

    MATH  Google Scholar 

  • Heiko Harborth, Eine Eigenschaft aufeinanderfolgender Zahlen, Arch. Math. (Basel), 21(1970) 50–51; MR 41 #6771.

    MathSciNet  MATH  Google Scholar 

  • Heiko Harborth, Sequenzen ganzer Zahlen, Zahlentheorie (Tagung, Math. Forschungsinst. Oberwolfach, 1970) 59-66; MR 51 #12775.

    Google Scholar 

  • S. S. Pillai, On m consecutive integers I, Proc. Indian Acad. Sci. Sect A, 11(1940) 6–12; MR 1, 199; II 11(1940) 73-80; MR 1, 291; III 13(1941) 530-533; MR 3, 66; IV Bull. Calcutta Math. Soc., 36(1944) 99-101; MR 6, 170.

    MathSciNet  Google Scholar 

  • D. H. Lehmer, On a problem of Størmer, Illinois J. Math., 8(1964) 57–79; MR 28 #2072

    MathSciNet  MATH  Google Scholar 

  • P. Erdős & Jan Turk, Products of integers in short intervals, Acta Arith., 44(1984) 147–174; MR 86d:11073.

    MathSciNet  Google Scholar 

  • D. F. Bailey, Two p 3 variations of Lucas’s theorem, J. Number Theory, 35(1990) 208–215; MR 90f: 11008.

    MathSciNet  MATH  Google Scholar 

  • Paul Erdős, C. B. Lacampagne & J. L. Selfridge, Estimates of the least prime factor of a binomial coefficient, Math. Comput., 61(1993) 215–224; MR 93k:11013.

    Google Scholar 

  • P. Erdős & J. L. Selfridge, Problem 6447, Amer. Math. Monthly, 90(1983) 710.

    MathSciNet  Google Scholar 

  • P. Erdős & J. L. Selfridge, Problem 6447, Amer. Math. Monthly, 92(1985) 435–436.

    MathSciNet  Google Scholar 

  • P. Erdős & G. Szekeres, Some number theoretic problems on binomial coefficients, Austral. Math. Soc. Gaz., 5(1978) 97–99; MR 80e:10010 is uninformative.

    MathSciNet  Google Scholar 

  • Richard J. McIntosh, A generalization of a congruential property of Lucas, Amer. Math. Monthly, 99(1992) 231–238.

    MathSciNet  MATH  Google Scholar 

  • Harry D. Ruderman, Problem 714, Crux Math., 8(1982) 48.

    Google Scholar 

  • Harry D. Ruderman, Problem 714, Crux Math., 9(1983) 58.

    Google Scholar 

  • David Segal, Problem E435, partial solution by H.W. Brinkman, Amer. Math. Monthly, 48(1941) 269–271.

    MathSciNet  Google Scholar 

  • P. Erdős, Problems and results in combinatorial analysis and combinatorial number theory, in Proc. 9th S.E. Conf. Combin. Graph Theory, Comput., Boca Raton, Congressus Numerantium XXI, Utilitas Math. Winnipeg, 1978, 29-40.

    Google Scholar 

  • P. Erdős & C. Pomerance, Matching the natural numbers up to n with distinct multiples in another interval, Nederl. Akad. Wetensch. Proc. Ser. A, 83(= Indag. Math., 42)(1980) 147–161; MR 81i:10053.

    Google Scholar 

  • Paul Erdős & Carl Pomerance, An analogue of Grimm’s problem of finding distinct prime factors of consecutive integers, Utilitas Math., 24(1983) 45–46; MR 85b:11072.

    MathSciNet  Google Scholar 

  • P. Erdős & J. L. Selfridge, Some problems on the prime factors of consecutive integers II, in Proc. Washington State Univ. Conf. Number Theory, Pullman, 1971, 13-21.

    Google Scholar 

  • C. A. Grimm, A conjecture on consecutive composite numbers, Amer. Math. Monthly, 76(1969) 1126–1128.

    MathSciNet  MATH  Google Scholar 

  • Michel Langevin, Plus grand facteur premier d’entiers en progression arithmétique, Sém. Delange-Pisot-Poitou, 18(1976/77) Théorie des nombres: Fasc. 1, Exp. No. 3, Paris, 1977; MR 81a:10011.

    Google Scholar 

  • Carl Pomerance, Some number theoretic matching problems, in Proc. Number Theory Conf., Queen’s Univ., Kingston, 1979, 237–247.

    Google Scholar 

  • Carl Pomerance & J. L. Selfridge, Proof of D.J. Newman’s coprime mapping conjecture, Mathematika, 27(1980) 69–83; MR 81i:10008.

    MathSciNet  MATH  Google Scholar 

  • K. Ramachandra, T. N. Shorey & R. Tijdeman, On Grimm’s problem relating to factorization of a block of consecutive integers, J. reine angew. Math., 273(1975) 109–124.

    MathSciNet  MATH  Google Scholar 

  • E. F. Ecklund, On prime divisors of the binomial coefficient, Pacific J. Math., 29(1969) 267–270.

    MathSciNet  MATH  Google Scholar 

  • P. Erdős, A theorem of Sylvester and Schur, J. London Math. Soc., 9(1934) 282–288.

    Google Scholar 

  • Paul Erdős, A mélange of simply posed conjectures with frustratingly elusive solutions, Math. Mag., 52(1979) 67–70.

    MathSciNet  Google Scholar 

  • P. Erdős & R. L. Graham, On the prime factors of, Fibonacci Quart., 14(1976) 348–352.

    MathSciNet  Google Scholar 

  • P. Erdős, R. L. Graham, I. Z. Ruzsa & E. Straus, On the prime factors of, Math. Comput., 29(1975) 83–92.

    Google Scholar 

  • M. Faulkner, On a theorem of Sylvester and Schur, J. London Math. Soc., 41(1966) 107–110.

    MathSciNet  MATH  Google Scholar 

  • Andrew Granville & Olivier Ramaré, Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients (see Abstract 882-11-124, Abstracts Amer. Math. Soc., 14(1993) 419).

    Google Scholar 

  • Hansraj Gupta, On the parity of (n + m − l)!(n, m)/n!m!, Res. Bull Panjab Univ. (N.S.), 20(1969) 571–575; MR 43 #3201.

    MATH  Google Scholar 

  • L. Moser, Insolvability of, Canad. Math. Bull, 6(1963)167–169.

    MathSciNet  MATH  Google Scholar 

  • J. W. Sander, Prime power divisors of, J. Number Theory, 39(1991) 65–74; MR 92i: 11097.

    MathSciNet  MATH  Google Scholar 

  • J. W. Sander, On prime divisors of binomial coefficients, Bull. London Math. Soc., 24(1992) 140–142; MR 93g: 11019.

    MathSciNet  MATH  Google Scholar 

  • J. W. Sander, Prime power divisors of binomial coefficients, J. reine angew. Math., 430(1992) 1–20; MR 93h:11021.

    MathSciNet  MATH  Google Scholar 

  • J. W. Sander, Prime power divisors of binomial coefficients, J. reine angew. Math., 437(1993) 217–220.

    MathSciNet  MATH  Google Scholar 

  • J. W. Sander, On primes not dividing binomial coefficients, Math. Proc. Cambridge Philos. Soc., 113(1993) 225–232; MR 93m:11099.

    MathSciNet  MATH  Google Scholar 

  • J. W. Sander, An asymptotic formula for ath powers dividing binomial coefficients, Mathematika, 39(1992) 25–36; MR 93i:11110.

    MathSciNet  MATH  Google Scholar 

  • J. W. Sander, On primes not dividing binomial coefficients, Math. Proc. Cambridge Philos. Soc., 113(1993) 225–232.

    MathSciNet  MATH  Google Scholar 

  • A. Sárközy, On divisors of binomial coefficients I, J. Number Theory, 20(1985) 70–80; MR 86c: 11002.

    MathSciNet  MATH  Google Scholar 

  • Renate Scheidler & Hugh C. Williams, A method of tabulating the number-theoretic function g(k), Math. Comput., 59(1992) 251–257; MR 92k:11146.

    MathSciNet  MATH  Google Scholar 

  • I. Schur, Einige Sätze über Primzahlen mit Anwendungen und Irreduzibilitätsfragen I, S.-B. Preuss, Akad. Wiss. Phys.-Math. Kl., 14(1929) 125–136.

    Google Scholar 

  • J. Sylvester, On arithmetical series, Messenger of Math., 21(1892) 1-19, 87–120.

    Google Scholar 

  • W. Utz, A conjecture of Erdős concerning consecutive integers, Amer. Math. Monthly, 68(1961) 896–897.

    MathSciNet  MATH  Google Scholar 

  • E. Burbacka & J. Piekarczyk, P. 217, R. 1, Colloq. Math., 10(1963) 365.

    Google Scholar 

  • A. Schinzel, Sur un problème de P. Erdős, Colloq. Math., 5(1957-58) 198–204.

    MathSciNet  Google Scholar 

  • P. Erdős, How many pairs of products of consecutive integers have the same prime factors? Amer. Math. Monthly, 87(1980) 391–392.

    Google Scholar 

  • Robert Baillie, Table of ϕ(n) = ϕ (n + 1), Math. Comput., 30(1976) 189–190.

    Google Scholar 

  • David Ballew, Janell Case & Robert N. Higgins, Table of ϕ(n) = ϕ (n +1), Math. Comput, 29(1975) 329–330.

    Google Scholar 

  • Michael W. Ecker, Problem E-1, The AMATYC Review, 5(1983) 55.

    Google Scholar 

  • Michael W. Ecker, Problem E-1, The AMATYC Review, 6(1984)55.

    Google Scholar 

  • P. Erdős, Über die Zahlen der Form σ(n) − n und n − ϕ(n), Eiern. Math., 28(1973) 83–86.

    Google Scholar 

  • P. Erdős & R. R. Hall, Distinct values of Euler’s ϕ-function, Mathematika, 23(1976) 1–3.

    MathSciNet  Google Scholar 

  • Patricia Jones, On the equation ϕ (x) + ϕ(k) = ϕ (x + k), Fibonacci Quart., 28(1990) 162–165; MR 91e:11008.

    MathSciNet  MATH  Google Scholar 

  • M. Lal & P. Gillard, On the equation ϕ(n) = ϕ(n + k), Math. Comput., 26(1972) 579–582.

    MathSciNet  MATH  Google Scholar 

  • Helmut Maier & Carl Pomerance, On the number of distinct values of Euler’s ϕ-function, Acta Arith., 49(1988) 263–275.

    MathSciNet  MATH  Google Scholar 

  • Andrzej Mąkowski, On the equation ϕ(n + k) = 2ϕ(n), Elem. Math., 29(1974) 13.

    Google Scholar 

  • Kathryn Miller, UMT 25, Math. Comput., 27(1973) 447–448.

    Google Scholar 

  • A. Schinzel, Sur l’équation ϕ(x + k) = ϕ(x), Acta Arith., 4(1958) 181–184; MR 21 #5597.

    MathSciNet  MATH  Google Scholar 

  • A. Schinzel & A. Wakulicz, Sur l’équation ϕ(x+k) = ϕ(x) II, Acta Arith., 5(1959) 425–426; MR 23 #A831.

    MathSciNet  MATH  Google Scholar 

  • W. Sierpiński, Sur un propriété de la fonction ϕ(n), Publ. Math. Debrecen, 4(1956) 184–185.

    MathSciNet  Google Scholar 

  • Charles R. Wall, Density bounds for Euler’s function, Math. Comput., 26(1972) 779–783 with microfiche supplement; MR 48 #6043.

    MATH  Google Scholar 

  • Masataka Yorinaga, Numerical investigation of some equations involving Euler’s ϕ-function, Math. J. Okayama Univ., 20(1978) 51–58.

    MathSciNet  MATH  Google Scholar 

  • Ronald Alter, Can ϕ(n) properly divide n − 1? Amer. Math. Monthly, 80 (1973) 192–193.

    MathSciNet  Google Scholar 

  • G. L. Cohen & P. Hagis, On the number of prime factors of n if ϕ(n)∣n − 1, Nieuw Arch. Wish. (3), 28(1980) 177–185.

    MathSciNet  MATH  Google Scholar 

  • G. L. Cohen & S. L. Segal, A note concerning those n for which ϕ(n) + 1 divides n, Fibonacci Quart., 27(1989)285–286.

    MathSciNet  MATH  Google Scholar 

  • Masao Kishore, On the equation kϕ(M) = M − 1, Nieuw Arch. Wish. (3), 25(1977) 48–53.

    MathSciNet  MATH  Google Scholar 

  • Masao Kishore, On the equation kϕ(M) = M − 1, Notices Amer. Math. Soc., 22(1975) A501–502.

    Google Scholar 

  • D. H. Lehmer, On Euler’s totient function, Bull Amer. Math. Soc., 38(1932) 745–751.

    MathSciNet  Google Scholar 

  • E. Lieuwens, Do there exist composite numbers for which kϕ(M) = M − 1 holds? Nieuw Arch. Wish. (3), 18(1970) 165–169; MR 42 #1750.

    MathSciNet  MATH  Google Scholar 

  • R. J. Miech, An asymptotic property of the Euler function, Pacific J. Math., 19(1966) 95–107; MR 34 #2541.

    MathSciNet  MATH  Google Scholar 

  • Carl Pomerance, On composite n for which ϕ(n)∣n − 1, Acta Arith., 28(1976) 387–389.

    MathSciNet  MATH  Google Scholar 

  • Carl Pomerance, On composite n for which ϕ(n)∣n − 1, II, Pacific J. Math., 69(1977) 177–186; MR 55 #7901.

    MathSciNet  Google Scholar 

  • Carl Pomerance, On composite n for which ϕ(n)∣n − 1, Notices Amer. Math. Soc., 22(1975) A542.

    Google Scholar 

  • József Sándor, On the arithmetical functions σk(n) and ϕk(n), Math. Student, 58(1990) 49–54; MR 91h:11005.

    MathSciNet  MATH  Google Scholar 

  • Fred, Schuh, Can n − 1 be divisible by ϕ(n) when n is composite? Mathematica, Zutphen B, 12(1944) 102–107.

    MathSciNet  MATH  Google Scholar 

  • V. Siva Rama Prasad & M. Rangamma, On composite n satisfying a problem of Lehmer, Indian J. Pure Appl. Math., 16(1985) 1244–1248; MR 87g:11017.

    MathSciNet  MATH  Google Scholar 

  • V. Siva Rama Prasad & M. Rangamma, On composite n for which ϕ(n)∣n − 1, Nieuw Arch. Wish. (4), 5(1987) 77–81; MR 88k:11008.

    MathSciNet  MATH  Google Scholar 

  • M. V. Subbarao, On two congruences for primality, Pacific J. Math., 52(1974) 261–268; MR 50 #2049.

    MathSciNet  MATH  Google Scholar 

  • M. V. Subbarao, On composite n satisfying ψ(n) = 1 mod n, Abstract 882-11-60 Abstracts Amer. Math. Soc., 14(1993) 418.

    Google Scholar 

  • David W. Wall, Conditions for ϕ(N) to properly divide N − 1, A Collection of Manuscripts Related to the Fibonacci Sequence, 18th Anniv. Vol., Fibonacci Assoc, 205-208.

    Google Scholar 

  • Shan Zun, On composite n for which ϕ(n)∣n − 1, J. China Univ. Sci. Tech., 15(1985) 109–112; MR 87h:11007.

    MathSciNet  MATH  Google Scholar 

  • Le Mao-Hua, A note on primes p with σ(p m) = z n, Colloq. Math., 62(1991) 193–196.

    MathSciNet  Google Scholar 

  • R. D. Carmichael, Note on Euler’s ϕ-function, Bull. Amer. Math. Soc., 28(1922) 109–110.

    MathSciNet  MATH  Google Scholar 

  • R. D. Carmichael, Note on Euler’s ϕ-function, Bull. Amer. Math. Soc., 13(1907) 241–243.

    MathSciNet  MATH  Google Scholar 

  • P. Erdős, On the normal number of prime factors of p − 1 and some other related problems concerning Euler’s ϕ-function, Quart. J. Math. Oxford Ser., 6(1935) 205–213.

    Google Scholar 

  • P. Erdős, Some remarks on Euler’s ϕ-function and some related problems, Bull. Amer. Math. Soc., 51(1945) 540–544.

    MathSciNet  Google Scholar 

  • P. Erdős, Some remarks on Euler’s ϕ-function, Acta Arith., 4(1958) 10–19; MR 22#1539.

    MathSciNet  Google Scholar 

  • Lorraine L. Foster, Solution to problem E3361, Amer. Math. Monthly, 98(1991) 443.

    MathSciNet  Google Scholar 

  • Peter Hagis, On Carmichael’s conjecture concerning the Euler phi function (Italian summary), Boll. Un. Mat. Ital (6), A5(1986) 409–412.

    MathSciNet  Google Scholar 

  • C. Hooley, On the greatest prime factor of p + a, Mathematika, 20(1973) 135–143.

    MathSciNet  MATH  Google Scholar 

  • Henryk Iwaniec, On the Brun-Tichmarsh theorem and related questions, Proc. Queen’s Number Theory Conf., Kingston, Ont. 1979, Queen’s Papers Pure Appl. Math., 54(1980) 67–78; Zbl. 446.10036.

    Google Scholar 

  • V. L. Klee, On a conjecture of Carmichael, Bull. Amer. Math. Soc., 53(1947) 1183–1186; MR 9, 269.

    MathSciNet  MATH  Google Scholar 

  • P. Masai & A. Valette, A lower bound for a counterexample to Carmichael’s conjecture, Boll. Un. Mat. Ital. A (6), 1 (1982) 313–316; MR 84b:10008.

    MathSciNet  MATH  Google Scholar 

  • Carl Pomerance, On Carmichael’s conjecture, Proc. Amer. Math. Soc., 43(1974) 297–298.

    MathSciNet  MATH  Google Scholar 

  • Carl Pomerance, Popular values of Euler’s function, Mathematika, 27(1980) 84–89; MR 81k: 10076.

    MathSciNet  MATH  Google Scholar 

  • Aaron Schlafly & Stan Wagon, Carmichael’s conjecture is valid below 102,000,000, Math. Comput..

    Google Scholar 

  • M. V. Subbarao & L.-W. Yip, Carmichael’s conjecture and some analogues, in Théorie des Nombres (Québec, 1987), de Gruyter, Berlin-New York, 1989, 928-941 (and see Canad. Math. Bull., 34(1991) 401–404.

    MathSciNet  MATH  Google Scholar 

  • Alain Valette, Fonction d’Euler et conjecture de Carmichael, Math. et Pédag., Bruxelles, 32(1981) 13–18.

    Google Scholar 

  • Stan Wagon, Carmichael’s ‘Empirical Theorem’, Math. Intelligencer, 8(1986) 61–63; MR 87d:11012.

    MathSciNet  MATH  Google Scholar 

  • K. R. Wooldridge, Values taken many times by Euler’s phi-function, Proc. Amer. Math. Soc., 76(1979) 229–234; MR 80g:10008.

    MathSciNet  MATH  Google Scholar 

  • P. Erdős, On the integers relatively prime to n and on a number-theoretic function considered by Jacobsthal, Math. Scand., 10(1962) 163–170; MR 26 #3651.

    MathSciNet  Google Scholar 

  • C. Hooley, On the difference of consecutive numbers prime to n, Acta Arith., 8(1962/1963) 343–347; MR 27 #5741.

    MathSciNet  MATH  Google Scholar 

  • H. L. Montgomery & R. C. Vaughan, On the distribution of reduced residues, Ann. of Math. (2), 123(1986) 311–333; MR 87g:11119.

    MathSciNet  MATH  Google Scholar 

  • R. C. Vaughan, Some applications of Montgomery’s sieve, J. Number Theory, 5(1973) 64–79.

    MathSciNet  MATH  Google Scholar 

  • Krassimir T. Atanassov, New integer functions, related to ϕ and σ functions, Bull. Number Theory Related Topics, 11(1987) 3–26; MR 90j:11007.

    MathSciNet  MATH  Google Scholar 

  • P. A. Catlin, Concerning the iterated ϕ-function, Amer. Math. Monthly, 77(1970) 60–61.

    MathSciNet  MATH  Google Scholar 

  • P. Erdős, A. Granville, C. Pomerance & C. Spiro, On the normal behavior of the iterates of some arithmetic functions, in Berndt, Diamond, Halberstam & Hildebrand (editors), Analytic Number Theory, Proc. Conf. in honor P.T. Bateman, Allerton Park, 1989, Birkhäuser, Boston, 1990, 165-204; MR 92a:11113.

    Google Scholar 

  • P. Erdős, Some remarks on the iterates of the ϕ and σ functions, Colloq. Math., 17(1967) 195–202; MR 36 #2573.

    MathSciNet  Google Scholar 

  • Paul Erdős & R. R. Hall, Euler’s ϕ-function and its iterates, Mathematika, 24(1977) 173–177; MR 57 #12356.

    MathSciNet  Google Scholar 

  • Miriam Hausman, The solution of a special arithmetic equation, Canad. Math. Bull, 25(1982) 114–117.

    MathSciNet  MATH  Google Scholar 

  • W. H. Mills, Iteration of the ϕ-function, Amer. Math. Monthly, 50(1943) 547–549; MR 5, 90.

    MathSciNet  MATH  Google Scholar 

  • C. A. Nicol, Some diophantine equations involving arithmetic functions, J. Math. Anal. Appl., 15(1966) 154–161.

    MathSciNet  MATH  Google Scholar 

  • Ivan Niven, The iteration of certain arithmetic functions, Canad. J. Math., 2(1950) 406–408; MR 12, 318.

    MathSciNet  MATH  Google Scholar 

  • S. S. Pillai, On a function connected with ϕ(n), Bull. Amer. Math. Soc., 35(1929) 837–841.

    MathSciNet  MATH  Google Scholar 

  • Carl Pomerance, On the composition of the arithmetic functions σ and ϕ, Colloq. Math., 58(1989) 11–15; MR 91c:11003.

    MathSciNet  MATH  Google Scholar 

  • Harold N. Shapiro, An arithmetic function arising from the ϕ-function, Amer. Math. Monthly, 50(1943) 18–30; MR 4, 188.

    MathSciNet  MATH  Google Scholar 

  • Charles R. Wall, Unbounded sequences of Euler-Dedekind means, Amer. Math. Monthly, 92(1985) 587.

    MathSciNet  MATH  Google Scholar 

  • P. Erdős, Problem P. 294, Canad. Math. Bull., 23(1980) 505.

    Google Scholar 

  • Solomon W. Golomb, Equality among number-theoretic functions, preprint, Oct 1992; Abstract 882-11-16, Abstracts Amer. Math. Soc., 14(1993) 415–416.

    Google Scholar 

  • A. Mąkowski & A. Schinzel, On the functions ϕ(n) and σ(n), Colloq. Math., 13(1964–1965) 95–99; MR 30 #3870.

    Google Scholar 

  • Carl Pomerance, On the composition of the arithmetic functions σ and ϕ, Colloq. Math., 58(1989) 11–15; MR 91c:11003.

    MathSciNet  MATH  Google Scholar 

  • József Sándor, On the composition of some arithmetic functions, Studia Univ. Babeş-Bolyai Math., 34(1989) 7–14; MR 91i:11008.

    MATH  Google Scholar 

  • L. Carlitz, A note on the left factorial function, Math. Balkanika, 5(1975) 37–42.

    MATH  Google Scholar 

  • Ɖuro Kurepa, On some new left factorial propositions, Math. Balkanika, 4(1974) 383–386; MR 58 #10716.

    MathSciNet  MATH  Google Scholar 

  • Ž. Mijajlović, On some formulas involving!n and the verification of the!n-hypothesis by use of computers, Publ. Inst. Math. (Beograd) (N.S.) 47(61) (1990) 24–32; MR 92d:11134.

    MathSciNet  Google Scholar 

  • E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Annals of Math., 39(1938) 350–360; Zbl. 19, 5.

    MathSciNet  Google Scholar 

  • Barry J. Powell, Advanced problem 6325, Amer. Math. Monthly, 87(1980) 826.

    MathSciNet  Google Scholar 

  • P. Erdős & Carl Pomerance, On the largest prime factors of n and n + 1, Aequationes Math., 17(1978) 311–321; MR 58 #476.

    MathSciNet  Google Scholar 

  • A. Schinzel, On primitive prime factors of an − bn, Proc. Cambridge Philos. Soc., 58(1962) 555–562.

    MathSciNet  MATH  Google Scholar 

  • Sun Qi & Zhang Ming-Zhi, Pairs where 2a − 2b divides n a − nb for all n, Proc. Amer. Math. Soc., 93(1985) 218–220; MR 86c:11004.

    MathSciNet  MATH  Google Scholar 

  • Stephen K. Doig, Math Whiz makes digital discovery, The Miami Herald, 1986-08-22; Coll. Math. J., 18(1987) 80.

    Google Scholar 

  • Editorial, Smith numbers ring a bell? Fort Lauderdale Sun Sentinel, 86-09-16, p. 8A.

    Google Scholar 

  • Editorial, Start with 4,937,775, New York Times, 86-09-02.

    Google Scholar 

  • Wayne L. McDaniel, The existence of infinitely many k-Smith numbers, Fibonacci Quart, 25(1987) 76–80.

    MathSciNet  MATH  Google Scholar 

  • Wayne L. McDaniel, Powerful k-Smith numbers, Fibonacci Quart., 25(1987) 225–228.

    MathSciNet  MATH  Google Scholar 

  • Wayne L. McDaniel, Palindromic Smith numbers, J. Recreational Math., 19(1987) 34–37.

    MATH  Google Scholar 

  • Wayne L. McDaniel, Difference of the digital sums of an integer base b and its prime factors, J. Number Theory, 31(1989) 91–98; MR 90e:11021.

    MathSciNet  MATH  Google Scholar 

  • Wayne L. McDaniel & Samuel Yates, The sum of digits function and its application to a generalization of the Smith number problem, Nieuw Arch. Wisk. (4), 7(1989) 39–51.

    MathSciNet  MATH  Google Scholar 

  • Sham Oltikar & Keith Wayland, Construction of Smith numbers, Math. Mag., 56(1983) 36–37.

    MathSciNet  MATH  Google Scholar 

  • Ivars Peterson, In search of special Smiths, Science News, 86-08-16, p. 105.

    Google Scholar 

  • A. Wilansky, Smith numbers, Two-Year Coll. Math. J., 13(1982) 21.

    Google Scholar 

  • Samuel Yates, Special sets of Smith numbers, Math. Mag., 59(1986) 293–296.

    MathSciNet  MATH  Google Scholar 

  • Samuel Yates, Smith numbers congruent to 4 (mod 9), J. Recreational Math., 19(1987) 139–141.

    MATH  Google Scholar 

  • Samuel Yates, How odd the Smith are, J. Recreational Math., 19(1987) 168–174.

    Google Scholar 

  • Samuel Yates, Digital sum sets, in R. A. Mollin (ed.), Number Theory, Proc. 1st Canad. Number Theory Assoc. Conf., Banff, 1988, de Gruyter, New York, 1990, pp. 627-634; MR 92c: 11008.

    Google Scholar 

  • Samuel Yates, Tracking titanics, in R. K. Guy & R. E. Woodrow (eds.), The Lighter Side of Mathematics, Proc. Strens Mem. Conf., Calgary, 1986, Spectrum Series, Math. Assoc. of America, Washington DC, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guy, R.K. (1994). Divisibility. In: Unsolved Problems in Number Theory. Problem Books in Mathematics, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-3585-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3585-4_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-3587-8

  • Online ISBN: 978-1-4899-3585-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics