Skip to main content

Design of Wireless Health Platforms

  • Chapter
  • First Online:
Wearable Monitoring Systems

Abstract

Wireless embedded platforms play a significant role in Wireless Health: For many hidden medical conditions, symptoms may not reveal during traditional clinical visits. Cumulative, free-living monitoring, where individuals are monitored continuously with the use of wireless electronics and sensors, is considered a potential solution for capturing additional physiological data (Bonato 2003). From chronic disease management to physical rehabilitation, these platforms have demonstrated their potential uses (Moy et al. 2003; Bonato 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 84.99
Price excludes VAT (USA)
Softcover Book
USD 109.99
Price excludes VAT (USA)
Hardcover Book
USD 109.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Polar T31 Transmitter Belt; http://www.polarusa.com

  2. 2.

    Nonin Pulse Oximeter; http://www.nonin.com

  3. 3.

    MLT1132 Piezo Respiratory Belt Transducer; http://www.adinstruments.com

  4. 4.

    Bluetooth Special Interest Group; http://www.bluetooth.org/

  5. 5.

    Zigbee Alliance; http://www.zigbee.org/

  6. 6.

    ANT Alliance; http://www.thisisant.com/

  7. 7.

    MSP430F1611 Data Sheet; http://www.ti.com/msp430

  8. 8.

    WT12 Data Sheet; http://www.bluegiga.com

  9. 9.

    ADXL330 Tri-axial Accelerometer; http://www.analog.com

  10. 10.

    IDG-300 Integrated Dual-Axis Gyroscope; http://www.invensense.com

  11. 11.

    Au LK. MicroLEAP documentation; http://www.ascent.ucla.edu/wiki/index.php/Uleap

  12. 12.

    ADXL330 Tri-axial Accelerometer; http://www.analog.com

  13. 13.

    IDG-300 Integrated Dual-Axis Gyroscope; http://www.invensense.com

  14. 14.

    FlexiForce Force Sensor; http://www.tekscan.com

  15. 15.

    MLT1132 Piezo Respiratory Belt Transducer; http://www.adinstruments.com

  16. 16.

    Polar T31 Transmitter Belt; http://www.polarusa.com

References

  • Anliker U, Beutel J, Dyer M, Enzler R, Lukowicz P, Thiele L, Trster G (2004) A systematic approach to the design of distributed wearable systems. IEEE Trans Comput 53(8):1017–1033

    Article  Google Scholar 

  • Anliker U, Ward J, Lukowicz P, Troster G, Dolveck F, Baer M, Keita F, Schenker E, Catarsi F, Coluccini L, Belardinelli A, Shklarski D, Alon M, Hirt E, Schmid R, Vuskovic M (2004) Amon: a wearable multiparameter medical monitoring and alert system. IEEE Trans Inf Technol Biomed 8(4):415–427. doi:10.1109/TITB.2004.837888

    Article  Google Scholar 

  • Au L, Wu W, Batalin M, Mclntire D, Kaiser W (2007) MicroLEAP: energy-aware wire-less sensor platform for biomedical sensing applications. In: Biomedical circuits and systems conference, 2007. BIOCAS 2007. IEEE, pp 158–162. doi:10.1109/BIOCAS.2007.4463333

    Google Scholar 

  • Au L, Wu W, Batalin M, Kaiser W (2008) Active guidance towards proper cane usage. In: 5th International summer school and Symposium on medical devices and biosensors, 2008. ISSS-MDBS 2008., pp. 205–208. doi:10.1109/ISSMDBS.2008.4575054

    Google Scholar 

  • Au L, Batalin M, Stathopoulos T, Bui A, Kaiser W (2009) Episodic sampling: towards energy-efficient patient monitoring with wearable sensors. In: 31st Annual international conference of the IEEE engineering in medicine and biology society (EMBC’09)

    Google Scholar 

  • Bao L, Intille SS (2004) Activity recognition from user-annotated acceleration data. Lect Notes Comput Sci 3001/2004:1–17. doi:10.1007/b96922

    Google Scholar 

  • Bateni H, Maki BE (2005) Assistive devices for balance and mobility: benefits, demands, and adverse consequences. Arch Phys Med Rehabil 86:134–145

    Article  Google Scholar 

  • Beutel J (2006) Fast-prototyping using the BTnode platform. In: Proceedings of the conference on design, automation and test in Europe (DATE’06)

    Google Scholar 

  • Bharatula NB, Anliker U, Lukowicz P, Trster G (2006) Architectural tradeoffs in wearable systems. In: Architecture of Computing Systems - ARCS 2006, ser. Lecture Notes in Computer Science, Grass W, Sick B, and Waldschmidt K, eds., vol. 3894. Springer Berlin/Heidelberg, pp 217–231

    Google Scholar 

  • Bonato P (2003) Wearable sensors/systems and their impact on biomedical engineering. IEEE Eng Med Biol Mag 22(3):18–20. doi:10.1109/MEMB.2003.1213622

    Article  Google Scholar 

  • Bonato P (2005) Advances in wearable technology and applications in physical medicine and rehabilitation. J Neuroeng Rehabil 2(2) http://www.jneuroengrehab.com/content/2/1/2

    Google Scholar 

  • Gao T, Greenspan D, Welsh M, Juang R, Alm A (2005) Vital signs monitoring and patient tracking over a wireless network. 27th annual international conference of the IEEE engineering in medicine and biology society, 2005, pp 102–105. doi:10.1109/IEMBS.2005.1616352

    Google Scholar 

  • Jovanov E, Milenkovic A, Otto C, Groen PD, Johnson B, Warren S, Taibi G (2005) A WBAN system for ambulatory monitoring of physical activity and health status: applications and challenges. In: Proceedings of the international conference on engineering in medicine and biology society (IEEE-EMBS), pp 3810–3813

    Google Scholar 

  • Kamijoh N, Inoue T, Olsen C, Raghunath M, Narayanaswami C (2001) Energy trade-offs in the ibm wristwatch computer. In: Proceedings of the fifth international symposium on wearable computers, 2001, pp 133–140. doi:10.1109/ISWC.2001.962115

    Google Scholar 

  • Kannus P, Parkkari J, Koskinen S, Palvanen SNM, Jrvinen M, Vuori I (1999) Fall-induced injuries and deaths among older adults. JAMA 281:1895–1899

    Article  Google Scholar 

  • Krause A, Ihmig M, Rankin E, Leong D, Gupta S, Siewiorek D, Smailagic A, Deisher M, Sengupta U (2005) Trading off prediction accuracy and power consumption for context-aware wearable computing. In:. Proceedings of the ninth IEEE international symposium on wearable computers, 2005, pp 20–26. doi:10.1109/ISWC.2005.52

    Google Scholar 

  • Labrosse JJ (2002) MicroC/OS II: the real-time kernel. CMP Books, Burlington, MA

    Google Scholar 

  • Malan D, Fulford-Jones TRF, Welsh M, Moulton S (2004) CodeBlue: an ad hoc sensor net-work infrastructure for emergency medical care. In: Proceedings of the MobiSys 2004 workshop applications mobile embedded systems (WAMES 2004), Boston, MA, pp 12–14

    Google Scholar 

  • Maurer U, Rowe A, Smailagic A, Siewiorek D (2006) eWatch: a wearable sensor and notication platform. In: International workshop on wearable and implantable body sensor networks, 2006, pp 4–145. doi:10.1109/BSN.2006.24

    Google Scholar 

  • McIntire D, Ho K, Yip B, Singh A, Wu W, Kaiser WJ (2006) The low power energy aware processing (LEAP) embedded networked sensor system. In: IPSN’06: Proceedings of the fifth international conference on information processing in sensor networks. ACM Press, New York, pp 449–457. doi:http://doi.acm.org/10.1145/1127777.1127846

  • Medical Applications Guide (2007), TI’s Medical Applications Guide, Texas Instruments. URL: www.ti.com/medical

    Google Scholar 

  • Moy M, Mentzer S, Reilly J (2003) Ambulatory monitoring of cumulative free-living activity. IEEE Eng Med Biol Mag 22(3):89–95. doi:10.1109/MEMB.2003.1213631

    Article  Google Scholar 

  • Nachman L, Kling R, Adler R, Huang J, Hummel V (2005) The intel mote platform: a bluetooth-based sensor network for industrial monitoring. In: Proceedings of the international conference on information processing in sensor networks (IPSN), Los Angeles, CA

    Google Scholar 

  • Pansiot J, Stoyanov D, McIlwraith D, Lo BP, Yang GZ (2007) Ambient and wearable sensor fusion for activity recognition in healthcare monitoring systems. In: 4th international workshop on wearable and implantable body sensor networks (BSN 2007)

    Google Scholar 

  • Park S, Jayaraman S (2003) Enhancing the quality of life through wearable technology. IEEE Eng Med Biol Mag 22(3):41–48. doi:10.1109/MEMB.2003.1213625

    Article  Google Scholar 

  • Patel S, Lorincz K, Hughes R, Huggins N, Growdon J, Welsh M, Bonato P (2007) Analysis of feature space for monitoring persons with parkinson’s disease with application to a wireless wearable sensor system. In: Engineering in Medicine and Biology Society, 2007. 29th annual international conference of the IEEE, pp 6290–6293. doi:10.1109/IEMBS.2007.4353793

    Google Scholar 

  • Rubenstein LZ, Josephson KR (2006) Falls and their prevention in elderly people: what does the evidence show? Med Clin North Am 90:807–824

    Article  Google Scholar 

  • Sattin RW, Nevitt MC (1993) Injuries in later life: epidemiology and environmental aspects. Oxford Textbook of Geriatric Medicine. Oxford University Press, New York

    Google Scholar 

  • Stager M, Lukowicz P, Troster G (2004) Implementation and evaluation of a low-power sound- based user activity recognition system. In: Proceedings of the eighth international symposium on wearable computers, 2004. ISWC 2004. 1, pp 138–141. doi:10.1109/ISWC.2004.25

    Google Scholar 

  • Steele BG, Belza B, Hunziker J, Holt L, Legro M, Coppersmith J, Buchner D, Lak- shminaryan S (2003) Monitoring daily activity during pulmonary rehabilitation using a triaxial accelerometer. J Cardiopulm Rehabil 23:139–142

    Article  Google Scholar 

  • Tu SP, McDonell MB, Spertus JA, Steele BG, Fihn SD (1997) A new self-administered questionnaire to monitor health-related quality of life in patients with COPD. Chest 112(3):614–622. doi:10.1378/chest.112.3.614. http://www.chestjournal.org/content/112/3/614.abstract

    Google Scholar 

  • Webster JG (1997) Medical instrumentation: application and design. Wiley, New York

    Google Scholar 

  • Winters J, Wang Y (2003) Wearable sensors and telerehabilitation. IEEE Eng Med Biol Mag 22(3):56–65. doi:10.1109/MEMB.2003.1213627

    Article  Google Scholar 

  • Wu W (2008) MEDIC: an end-to-end biomedical system based on active sensor fusion. Ph.D. Thesis, University of California, Los Angeles

    Google Scholar 

  • Wu W, Batalin M, Au L, Bui A, Kaiser W (2007) Context-aware sensing of physiological signals. In: Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th annual international conference of the IEEE, pp 5271–5275. doi:10.1109/IEMBS.2007.4353531

    Google Scholar 

  • Wu W, Bui A, Batalin M, Liu D, Kaiser W (2007) Incremental diagnosis method for intelligent wearable sensor systems. IEEE Trans Inf Technol Biomed 11(5):553–562. doi:10.1109/TITB.2007.897579

    Article  Google Scholar 

  • Wu W, Au L, Jordan B, Stathopoulos T, Batalin M, Kaiser W, Vahdatpour A, Sarrafzadeh M, Fang M, Chodosh J (2008) The SmartCane system: an assistive device for geriatrics. In: BodyNets’08: proceedings of the ICST 3rd international conference on body area networks, pp 1–4. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Kaiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Au, L., Jordan, B., Wu, W., Batalin, M., Kaiser, W.J. (2011). Design of Wireless Health Platforms. In: Bonfiglio, A., De Rossi, D. (eds) Wearable Monitoring Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7384-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7384-9_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7383-2

  • Online ISBN: 978-1-4419-7384-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics