Skip to main content

Spectral Theory of Sturm-Liouville Operators Approximation by Regular Problems

  • Chapter
Sturm-Liouville Theory

Abstract

It is the aim of this article to present a brief overview of the theory of Sturm-Liouville operators, self-adjointness and spectral theory: minimal and maximal operators, Weyl’s alternative (limit point/limit circle case), deficiency indices, self-adjoint realizations, spectral representation.

The main part of the lecture will be devoted to the method of proving spectral results by approximating singular problems by regular problems: calculation/approximation of the discrete spectrum as well as the study of the absolutely continuous spectrum. For simplicity, most results will be presented only for the case where one end point is regular, but they can be extended to the general case, as well as to Dirac systems, to discrete operators, and (partially) to ordinary differential operators of arbitrary order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 129.00
Price excludes VAT (USA)
Hardcover Book
USD 169.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P.B. Bailey, W.N. Everitt and A. Zettl, Computing eigenvalues of singular Sturm-Liouville problems, Res. Math. 20 (1991), 391–423.

    Google Scholar 

  2. P.B. Bailey, W.N. Everitt, J. Weidmann and A. Zettl, Regular Approximations of singular Sturm-Liouville problems, Res. Math. 23 (1993), 3–22.

    Google Scholar 

  3. N. Dunford and J.T. Schwartz, Linear Operators Part II: Spectral Theory, Interscience, New York, 1963.

    Google Scholar 

  4. J.M. Gelfand and B.M. Levitan, On the determination of a differential equation from its spectral function (Russian), Izv. Akad. Nauk USSR. 15 (1951), 309–360, Amer. Math. Soc. Translations (2) 1 (1955), 253–304.

    Google Scholar 

  5. F. Gesztesy, D. Gurarie, H. Holden, M. Klaus, L. Sudan, B. Simon and P. Vogl, Trapping and Cascading of Eigenvalues in the Large Coupling Limit, Commun. Math. Phys. 118 (1988), 597–634.

    Google Scholar 

  6. D. Gilbert and D.B. Pearson, On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators, J. Math. Anal. Appl. 128 (1987), 30–56.

    Google Scholar 

  7. Ph. Hartman and A. Wintner, A separation theorem for continuous spectra, Amer. J. Math. 71 (1949), 650–662.

    Google Scholar 

  8. S. Kotani, Lyapunov exponents and spectra for one-dimensional random Schrödinger operators, Contemp. Math. 50 (1986), 277��286.

    Google Scholar 

  9. M.A. Naimark, Linear Differential Operators Part II: Linear Differential Operators in Hilbert Space, F. Unger Publ., New York, 1968.

    Google Scholar 

  10. D.B. Pearson, Quantum Scattering and Spectral Theory, Academic Press, London, 1988.

    Google Scholar 

  11. M. Reed and B, Simon, Methods of Modern Mathematical Physics III: Scattering Theory, Academic Press, New York, 1979.

    Google Scholar 

  12. G. Stolz and J. Weidmann, Approximation of isolated eigenvalues of ordinary differential operators, J. Reine Angew. Math. 445 (1993), 31–44.

    Google Scholar 

  13. G. Stolz and J. Weidmann, Approximation of isolated eigenvalues of general singular ordinary differential operators, Res. Math. 28 (1995), 345–358.

    Google Scholar 

  14. J. Weidmann, Zur Spektraltheorie von Sturm-Liouville-Operatoren, Math. Zeitschr. 98 (1967), 268–302.

    Google Scholar 

  15. J. Weidmann, Verteilung der Eigenwerte für eine Klasse von Integraloperatoren in L2(a, b), J. Reine Angew. Math. 276 (1975), 213–220.

    Google Scholar 

  16. J. Weidmann, Uniform Nonsubordinacy and the Absolutely Continuous Spectrum, Analysis 16 (1996), 89–99.

    Google Scholar 

  17. J. Weidmann, Spectral Theory of Ordinary Differential Operators, Lecture Notes in Mathematics 1258, Springer, Berlin, 1987.

    Google Scholar 

  18. J. Weidmann, Lineare Operatoren in Hilbertriiumen, Teil I Grundlagen, Teubner, Stuttgart, 2000.

    Google Scholar 

  19. J. Weidmann, Lineare Operatoren in Hilbertriumen, Teil II Anwendungen, Teubner, Stuttgart, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Weidmann, J. (2005). Spectral Theory of Sturm-Liouville Operators Approximation by Regular Problems. In: Amrein, W.O., Hinz, A.M., Pearson, D.P. (eds) Sturm-Liouville Theory. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7359-8_4

Download citation

Publish with us

Policies and ethics