Skip to main content

Texture Segmentation Using Area Morphology Local Granulometries

  • Conference paper
Mathematical Morphology: 40 Years On

Part of the book series: Computational Imaging and Vision ((CIVI,volume 30))

Abstract

Texture segmentation based on local morphological pattern spectra provides an attractive alternative to linear scale spaces as the latter suffer from blurring and do not preserve the shape of image features. However, for successful segmentation, pattern spectra derived using a number of structuring elements, often at different orientations, are required. This paper addresses this problem by using area morphology to generate a single pattern spectrum, consisting of a local granulometry and anti-granulometry, at each pixel position. As only one spectrum is produced, segmentation is performed by directly using the spectrum as the feature vector instead of taking pattern spectrum moments. Segmentation results for a simulated image of Brodatz textures and test images from the Outex texture database show the potential of the new approach.

Neil Fletcher supported by an EPSRC CASE award in conjunction with QinetiQ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 84.99
Price excludes VAT (USA)
Softcover Book
USD 109.99
Price excludes VAT (USA)
Hardcover Book
USD 109.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S.T. Acton and D.P. Mukherjee. Scale space classification using area morphology. IEEE Transactions on Image Processing, 9(4):623–635, April 2000.

    Article  Google Scholar 

  2. S. Baeg, A.T. Popov, V.G. Kamat, S. Batman, K. Sivakumar, N. Kehtarnavaz, E.R. Dougherty, and R.B. Shah. Segmentation of mammograms into distinct morphological texture regions. In IEEE Symp. Computer Based Medical Systems, pages 20–25, 1998.

    Google Scholar 

  3. J.A. Bangham, R. Harvey, P.D. Ling, and R.V. Aldridge. Morphological scale-space preserving transforms in many dimensions. Journal of Electronic Imaging, 5(3):283–299, July 1996.

    Google Scholar 

  4. P. Brodatz. A Photographic Album for Artists and Designers. Dover, New York, 1966.

    Google Scholar 

  5. F. Cheng and A.N. Venetsanopoulos. An adaptive morphological filter for image processing. IEEE Transactions on Image Processing, 1(4):533–539, 1992.

    Article  Google Scholar 

  6. E.R. Dougherty and R.A. Lotufo. Hands-on Morphological Image Processing. SPIE Press, 2003.

    Google Scholar 

  7. E.R. Dougherty, J.T. Newell, and J.B. Pelz. Morphological texture-based maximum likelihood pixel classification based on local granulometric moments. Pattern Recognition, 25(10):1181–1198, 1992.

    Article  Google Scholar 

  8. R.M. Haralick. Statistical and structural approaches to texture. Proceedings of the IEEE, 67(5):786–804, May 1979.

    Google Scholar 

  9. A.K. Jain and F. Farrokhnia. Unsupervised texture segmentation using Gabor filters. Pattern Recognition, 24(12):1167–1186, 1991.

    Article  Google Scholar 

  10. T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480, 1990.

    Article  Google Scholar 

  11. P. Maragos. Pattern spectrum and multiscale shape representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7):701–716, 1989.

    Article  Google Scholar 

  12. G. Matheron. Randon Sets and Integral Geometry. Wiley, 1975.

    Google Scholar 

  13. A. Meijster and M.H.F. Wilkinson. A comparison of algorithms for connected set openings and closings. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(4):484–494, April 2002.

    Article  Google Scholar 

  14. T. Ojala, T. Mäenpää, M. Pietikäinen, J. Viertola, J. Kyllonen, and S. Huovinen. Outex — new framework for empirical evaluation of texture analysis algorithms. In Int. Conf. on Pattern Recognition, volume 1, pages 701–706, Canada, 2002.

    Google Scholar 

  15. P. Salembier and J. Serra. Flat zones filtering, connected operators, and filters by reconstruction. IEEE Transactions on Image Processing, 4(8):1153–1160, August 1995.

    Article  Google Scholar 

  16. J. Serra. Image Analysis and Mathematical Morphology. Academic Press, 1982.

    Google Scholar 

  17. M. Unser. Texture classification and segmentation using wavelet frames. IEEE Transactions on Image Processing, 4(11):1549–1560, 1995.

    Article  Google Scholar 

  18. L. Vincent. Morphological area openings and closings for grey-scale images. In Shape in Picture: Mathematical Description of Shape in Grey-level Images, pages 196–208, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Fletcher, N.D., Evans, A.N. (2005). Texture Segmentation Using Area Morphology Local Granulometries. In: Ronse, C., Najman, L., Decencière, E. (eds) Mathematical Morphology: 40 Years On. Computational Imaging and Vision, vol 30. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3443-1_33

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3443-1_33

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3442-8

  • Online ISBN: 978-1-4020-3443-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics