Die Schatten-Klassen, auch Schatten-von-Neumann-Klassen, benannt nach Robert Schatten und John von Neumann, sind spezielle Algebren von Operatoren, die im mathematischen Teilgebiet der Funktionalanalysis untersucht werden. Sie haben viele Eigenschaften mit den Folgenräumen gemeinsam.
Definition
BearbeitenIst ein kompakter linearer Operator zwischen unendlichdimensionalen Hilberträumen (im Endlichdimensionalen bricht die Folge ab), so gibt es eine monoton fallende Folge nicht-negativer reeller Zahlen mit und orthonormale Folgen in und in , sodass
- für alle gilt und
- die Operatoren für in der Operatornorm gegen konvergieren.
Das ist die sogenannte Schmidt-Darstellung. Die Zahlenfolge ist im Gegensatz zu den orthonormalen Folgen eindeutig durch bestimmt. Man schreibt daher für das -te Folgenglied und nennt diese Zahl auch den -ten singulären Wert von . Man kann zeigen, dass die Quadrate dieser Zahlen die monoton fallende Eigenwertfolge des kompakten und positiven Operators bilden.
Für ist die -te Schatten-Klasse kompakter Operatoren von nach durch
definiert. Dabei ist der Folgenraum der zur -ten Potenz summierbaren Folgen. Für definiert man die -Norm des Operators gerade durch diese Norm der Folge:
Die -Norm des Operators ist also genau die -Norm der zugehörigen Folge der singulären Werte des Operators.
Für den Fall schreibt man abkürzend . Oft nennt man nur diese Räume Schatten-Klassen.
Spezialfälle
BearbeitenFür entspricht der Raum der Menge der Spurklasseoperatoren.
Für entspricht dem Hilbertraum der Hilbert-Schmidt-Operatoren.
Eigenschaften
Bearbeiten- Die Schatten-Klassen haben viele Eigenschaften mit den -Räumen gemeinsam. ist mit der -Norm ein Banachraum. Für gilt und daher . Ferner gilt stets , wobei die Operator-Norm von ist.
- ist mit der Operator-Multiplikation sogar eine Banachalgebra mit isometrischer Involution, wobei die Involution die Adjunktion ist. Sind und stetige lineare Operatoren auf , so ist und es gilt . Die Schatten-Klassen sind daher zweiseitige Ideale in .
- Seien mit konjugierte Zahlen. Gilt dann und , so ist das Produkt ein Spurklasse-Operator und es gilt . Jedes definiert daher durch ein stetiges lineares Funktional auf . Man kann zeigen, dass die Abbildung ein isometrischer Isomorphismus von auf den Dualraum von ist, oder kurz . Man hat also auch hier ganz ähnliche Verhältnisse wie bei den Folgenräumen. Insbesondere sind die Schatten-Klassen für reflexiv, sie sind sogar gleichmäßig konvex. Wie bei den Folgenräumen ist dies für nicht der Fall. Die Verhältnisse für sind im Artikel Spurklasseoperator näher beschrieben.
Lokale Theorie der Schatten-Klassen
BearbeitenAuch im Rahmen der lokalen Theorie der Banachräume sind zentrale strukturelle Aspekte der endlich-dimensionalen Schatten-Klassen studiert worden; diese Räume sind von Bedeutung etwa im Bereich der Low-Rank matrix recovery, darunter die asymptotischen Volumina ihrer Einheitskugeln[1] sowie Entropiezahlen[2] oder auch s-Zahlen[3][4] für natürliche Einbettungen zwischen diesen Räumen. Darüber hinaus wurde für Einheitskugeln selbstadjungierter Schatten-Klassen für den Fall die berühmte Variance Conjecture bewiesen.[5]
Quellen
Bearbeiten- R. Schatten: Norm Ideals of Completely Continuous Operators. Ergebnisse der Mathematik und ihrer Grenzgebiete, 2. Folge, ISBN 3-540-04806-5.
- N. Dunford, J. T. Schwartz: Linear Operators, Part II, Spectral Theory. ISBN 0-471-60847-5.
- R. Meise, D. Vogt: Einführung in die Funktionalanalysis. Vieweg, 1992 ISBN 3-528-07262-8.
Einzelnachweise
Bearbeiten- ↑ Z. Kabluchko, J. Prochno, C. Thäle: Exact asymptotic volume and volume ratio of Schatten unit balls
- ↑ A. Hinrichs, J. Prochno, J. Vybíral: Entropy numbers of embeddings of Schatten classes
- ↑ A. Hinrichs, J. Prochno, J. Vybíral: Gelfand numbers of embeddings of Schatten classes
- ↑ J. Prochno, M. Strzelecki: Approximation, Gelfand, and Kolmogorov numbers of Schatten class embeddings
- ↑ B. Dadoun, M. Fradelizi, O. Guédon, P.-A. Zitt: Asymptotics of the Inertia Moments and the Variance Conjecture in Schatten Balls