Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Cyclic Stress-Strain and Plastic Deformation Aspects of Fatigue Crack Growth
By
LF Impellizzeri
LF Impellizzeri
1
Branch Chief
,
Technology-Strength, McDonnell Aircraft Company
,
St. Louis, Mo. 63166
;
symposium chairman
.
Search for other works by this author on:
ISBN-10:
0-8031-0319-0
ISBN:
978-0-8031-0319-1
No. of Pages:
231
Publisher:
ASTM International
Publication date:
1977

A new approach to fatigue crack propagation is described. The key element in the analysis is the inclined strip-yield superdislocation representation of crack-tip plasticity. The basis of the model is given and its potential application in a cycle-by-cycle analysis of fatigue crack growth under arbitrary cycle-by-cycle loads indicated. It is shown that, to perform a fatigue crack growth computation for a given load sequence, only the material's shear modulus, tensile yield strength, and Poisson's ratio need to be specified. In the process, some account is taken of crack closure during the load cycle. Illustrative calculations for uniform cyclic loading are described and comparisons with experimental results made.

1.
Atkinson
,
C.
and
Kanninen
,
M. F.
, “
A Simple Representation of Crack-Tip Plasticity: The Inclined-Strip-Yield-Superdislocation Model
,”
International Journal of Fracture Mechanics
, Vol.
13
,
1977
, p. 151.
2.
Bilby
,
B. A.
and
Swinden
,
K. H.
,
Proceedings
, Royal Society, Vol.
22
,
1965
, p. A285.
3.
Atkinson
,
C.
and
Kay
,
T. R.
,
Acta Metallurgica
, Vol.
19
,
1971
, p. 679.
4.
Feddersen
,
C. E.
and
Hyler
,
W. S.
, “
Fracture and Fatigue Crack-Propagation Characteristics of 1/4-Inch Mill-Annealed Ti-6Al-4V Titanium Alloy Plate
,” Final Report to Naval Air Development Center from
Battelle's Columbus Laboratories
, Contract No. N00156-C-1336,
01
11
1976
.
5.
Fedderson
,
C. E.
,
Porfilio
,
T. L.
,
Rice
,
R. C.
, and
Hyler
,
W. S.
, “
Part-Through Crack Behavior in Three Thicknesses of Mill-Annealed Ti-6Al-4V Plate
,” Final Report to Naval Air Development Center from
Battelle's Columbus Laboratories
, Contract No. N6226973-C-0036, 31 Dec., 1972.
6.
Hudson
,
C. M.
, “
Effect of Stress Ratios on Fatigue-Crack Growth in 7075-T6 and 2024-T3 Aluminum-Alloy Specimens
,” NASA TN D-5390,
Langley Research Center
,
08
1969
.
7.
Wheeler
,
D. E.
,
Journal of Basic Engineering
, Vol.
94
1972
, p. 181.
8.
Willenborg
,
J.
,
Engle
,
R. M.
, Jr.
, and
Wood
,
H. A.
, “
A Crack-Growth-Retardation Model Using an Effective Stress Concept
,” AFFDL-TM-71-l-FBR,
Air Force Flight Dynamics Laboratory
,
1971
.
9.
Newman
,
J. C.
, Jr.
, and
Armen
,
H.
, Jr.
, “
Elastic-Plastic Analysis of a Propagating Crack Under Cyclic Loading
,“
AIAA Journal
,
American Institute of Aeronautics and Astronautics
,
1976
.
10.
Elber
,
W.
,
Engineering Fracture Mechanics
, Vol.
2
,
1970
, p. 37.
11.
Rice
,
J. R.
in
Fatigue Crack Propagation, ASTM STP 515
,
American Society for Testing and Materials
,
1967
, p. 247.
12.
Weertman
,
H.
,
International Journal of Fracture Mechanics
, Vol.
5
,
1969
, p. 13.
13.
Bilby
,
B. A.
and
Heald
,
P. T.
,
Proceedings
, Royal Society, A305, 1968, p. 429.
14.
Yokobori
,
T.
and
Yoshida
,
M.
,
International Journal of Fracture Mechanics
, Vol.
10
,
1974
, p. 467.
15.
Neuman
,
P.
,
Acta Metallurgica
, Vol.
22
,
1974
, p. 1167.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal