Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct 20;20(1):475.
doi: 10.1186/s12967-022-03691-2.

Causality of genetically determined metabolites on anxiety disorders: a two-sample Mendelian randomization study

Affiliations

Causality of genetically determined metabolites on anxiety disorders: a two-sample Mendelian randomization study

Gui Xiao et al. J Transl Med. .

Abstract

Background: Although anxiety disorders are one of the most prevalent mental disorders, their underlying biological mechanisms have not yet been fully elucidated. In recent years, genetically determined metabolites (GDMs) have been used to reveal the biological mechanisms of mental disorders. However, this strategy has not been applied to anxiety disorders. Herein, we explored the causality of GDMs on anxiety disorders through Mendelian randomization study, with the overarching goal of unraveling the biological mechanisms.

Methods: A two-sample Mendelian randomization (MR) analysis was implemented to assess the causality of GDMs on anxiety disorders. A genome-wide association study (GWAS) of 486 metabolites was used as the exposure, whereas four different GWAS datasets of anxiety disorders were the outcomes. Notably, all datasets were acquired from publicly available databases. A genetic instrumental variable (IV) was used to explore the causality between the metabolite and anxiety disorders for each metabolite. The MR Steiger filtering method was implemented to examine the causality between metabolites and anxiety disorders. The standard inverse variance weighted (IVW) method was first used for the causality analysis, followed by three additional MR methods (the MR-Egger, weighted median, and MR-PRESSO (pleiotropy residual sum and outlier) methods) for sensitivity analyses in MR analysis. MR-Egger intercept, and Cochran's Q statistical analysis were used to evaluate possible heterogeneity and pleiotropy. Bonferroni correction was used to determine the causative association features (P < 1.03 × 10-4). Furthermore, metabolic pathways analysis was performed using the web-based MetaboAnalyst 5.0 software. All statistical analysis were performed in R software. The STROBE-MR checklist for the reporting of MR studies was used in this study.

Results: In MR analysis, 85 significant causative relationship GDMs were identified. Among them, 11 metabolites were overlapped in the four different datasets of anxiety disorders. Bonferroni correction showing1-linoleoylglycerophosphoethanolamine (ORfixed-effect IVW = 1.04; 95% CI 1.021-1.06; Pfixed-effect IVW = 4.3 × 10-5) was the most reliable causal metabolite. Our results were robust even without a single SNP because of a "leave-one-out" analysis. The MR-Egger intercept test indicated that genetic pleiotropy had no effect on the results (intercept = - 0.0013, SE = 0.0006, P = 0.06). No heterogeneity was detected by Cochran's Q test (MR-Egger. Q = 7.68, P = 0.742; IVW. Q = 12.12, P = 0.436). A directionality test conducted by MR Steiger confirmed our estimation of potential causal direction (P < 0.001). In addition, two significant pathways, the "primary bile acid biosynthesis" pathway (P = 0.008) and the "valine, leucine, and isoleucine biosynthesis" pathway (P = 0.03), were identified through metabolic pathway analysis.

Conclusion: This study provides new insights into the causal effects of GDMs on anxiety disorders by integrating genomics and metabolomics. The metabolites that drive anxiety disorders may be suited to serve as biomarkers and also will help to unravel the biological mechanisms of anxiety disorders.

Keywords: 1-linoleoylglycerophosphoethanolamine; Anxiety disorders; Genetically determined metabolites; Mendelian randomization; Serum metabolite.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential competing interests.

Figures

Fig. 1
Fig. 1
Mendelian randomization associations of known metabolites on the risk of the four different GWAS datasets of anxiety disorders (derived from the fixed-effect IVW analysis). IVW, inverse-variance weighted
Fig. 2
Fig. 2
Sensitivity analysis for1-linoleoylglycerophosphoethanolamine on the anxiety disorders diagnosed by psychiatrists passing Bonferroni correction

Similar articles

Cited by

References

    1. Penninx B, Pine DS, Holmes EA, Reif A. Benzodiazepines for the long-term treatment of anxiety disorders?—authors' reply. Lancet. 2021;398(10295):120. doi: 10.1016/S0140-6736(21)00931-4. - DOI - PMC - PubMed
    1. Diseases GBD, Injuries C. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1204–1222. doi: 10.1016/S0140-6736(20)30925-9. - DOI - PMC - PubMed
    1. Thibaut F. Anxiety disorders: a review of current literature. Dialogues Clin Neurosci. 2017;19(2):87–88. doi: 10.31887/DCNS.2017.19.2/fthibaut. - DOI - PMC - PubMed
    1. Foa EB, McLean CP. The efficacy of exposure therapy for anxiety-related disorders and its underlying mechanisms: the case of OCD and PTSD. Annu Rev Clin Psychol. 2016;12:1–28. doi: 10.1146/annurev-clinpsy-021815-093533. - DOI - PubMed
    1. Bandelow B, Michaelis S. Epidemiology of anxiety disorders in the 21st century. Dialogues Clin Neurosci. 2015;17(3):327–335. doi: 10.31887/DCNS.2015.17.3/bbandelow. - DOI - PMC - PubMed

Publication types

LinkOut - more resources