login
A268815
Number of purely crossing + partitions of [n].
4
1, 1, 0, 0, 1, 1, 5, 19, 76, 360, 1792, 9634, 55286, 336396, 2162554, 14629720, 103818489, 770678553, 5969822993, 48148947503, 403545713463, 3508356996105, 31587389832791, 294087418038113, 2827471212909189, 28037001032306431, 286398141349873925, 3010540174760962975
OFFSET
0,7
COMMENTS
For the definition of these special purely crossing partitions refer to Dykema link (see PC+(n) Definition 2.1 and Table 2).
From Gus Wiseman, Feb 23 2019: (Start)
a(n) is the number of topologically connected (A099947) set partitions of {1,...,n} with no successive elements in the same block. For example, the a(4) = 1 through a(7) = 19 set partitions are:
{{13}{24}} {{135}{24}} {{135}{246}} {{1357}{246}}
{{13}{25}{46}} {{13}{246}{57}}
{{14}{25}{36}} {{13}{257}{46}}
{{14}{26}{35}} {{135}{26}{47}}
{{15}{24}{36}} {{135}{27}{46}}
{{136}{24}{57}}
{{136}{25}{47}}
{{137}{25}{46}}
{{14}{257}{36}}
{{14}{26}{357}}
{{146}{25}{37}}
{{146}{27}{35}}
{{147}{25}{36}}
{{147}{26}{35}}
{{15}{246}{37}}
{{15}{247}{36}}
{{157}{24}{36}}
{{16}{24}{357}}
{{16}{247}{35}}
(End)
LINKS
Kenneth J. Dykema, Generating functions for purely crossing partitions, arXiv:1602.03469 [math.CO], 2016.
FORMULA
G.f.: G(x) satisfies C(x) = G(x/1-x) where C(x) is the g.f. of A099947 (see B(x) in Dykema link p. 7).
From Paul D. Hanna, Mar 07 2016: (Start)
O.g.f. A(x) satisfies
(1) A(x) = Sum_{n>=0} A000110(n)*x^n/((1+x)^n*A(x)^n), where A000110 are the Bell numbers.
(2) A(x) = Sum_{n>=0} x^n / Product_{k=1..n} ((1+x)*A(x) - k*x).
(3) A(x) = 1/(1 - x/((1+x)*A(x) - 1*x/(1 - x/((1+x)*A(x) - 2*x/(1 - x/((1+x)*A(x) - 3*x/(1 - x/((1+x)*A(x) - 4*x/(1 - x/((1+x)*A(x) - ... )))))))), a continued fraction. (End)
EXAMPLE
G.f.: A(x) = 1 + x + x^4 + x^5 + 5*x^6 + 19*x^7 + 76*x^8 + 360*x^9 + 1792*x^10 +...
MATHEMATICA
n = 30; F = x*Sum[BellB[k] x^k, {k, 0, n}] + O[x]^n; B = ComposeSeries[1/( InverseSeries[F, w] /w)-1, x/(1+x) + O[x]^n]; CoefficientList[B, x] // Rest (* Jean-François Alcover, Feb 16 2016, adapted from K. J. Dykema's code *)
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
intvQ[set_]:=Or[set=={}, Sort[set]==Range[Min@@set, Max@@set]];
Table[Length[Select[sps[Range[n]], And[!MatchQ[#, {___, {___, x_, y_, ___}, ___}/; x+1==y], #=={}||And@@Not/@intvQ/@Union@@@Subsets[#, {1, Length[#]-1}]]&]], {n, 0, 10}] (* Gus Wiseman, Feb 23 2019 *)
PROG
(PARI) lista(nn) = {c = x/serreverse(x*serlaplace(exp(exp(x+x*O(x^nn)) -1))); b = subst(c, x, x/(1+x) + O(x^nn)); Vec(b); }
(PARI) {a(n) = my(A=1+x); for(i=1, n, A = sum(m=0, n, x^m/prod(k=1, m, (1+x)*A - k*x +x*O(x^n)) )); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 07 2016
(PARI) {Stirling2(n, k) = n!*polcoeff(((exp(x+x*O(x^n)) - 1)^k)/k!, n)}
{Bell(n) = sum(k=0, n, Stirling2(n, k) )}
{a(n) = my(A=1+x); for(i=1, n, A = sum(m=0, n, Bell(m)*x^m/((1+x)*A +x*O(x^n))^m) ); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 07 2016
KEYWORD
nonn
AUTHOR
Michel Marcus, Feb 14 2016
STATUS
approved