Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2015, Volume 25, Issue 3, Pages 297–305 (Mi vuu485)  

MATHEMATICS

On rational approximations of functions and eigenvalue selection in Werner algorithm

O. E. Galkin, S. Yu. Galkina

Nizhni Novgorod State University, pr. Gagarina, 23, Nizhni Novgorod, 603950, Russia
References:
Abstract: The paper deals with the best uniform rational approximations (BURA) of continuous functions on compact (and even finite) subsets of real axis $\mathbb R$. The authors show that BURA does not always exist. They study the algorithm of Helmut Werner in more detail. This algorithm serves to search for BURA of the type $P_m/Q_n=\sum_{i=0}^ma_ix^i\big/\sum_{j=0}^nb_jx^j$ for functions on a set of $N=m+n+2$ points $x_1<\dots<x_N$. It can be used within the Remez algorithm of searching for BURA on a segment. The Werner algorithm calculates $(n+1)$ real eigenvalues $h_1,\dots,h_{n+1}$ for the matrix pencil $A-hB$, where $A$ and $B$ are some symmetric matrices. Each eigenvalue generates a rational fraction of the type $P_m/Q_n$ which is a candidate for the best approximation. It is known that at most one of these fractions is free from poles on the segment $[x_1,x_N]$, so the following problem arises: how to determine the eigenvalue which generates the rational fraction without poles? It is shown that if $m=0$ and all values $f(x_1),-f(x_2),\dots,(-1)^{n+2}f(x_{n+2})$ are different and the approximating function is positive (negative) at all points $x_1,\dots,x_{n+2}$, then this eigenvalue ranks $[(n+2)/2]$-th ($[(n+3)/2]$-th) in value. Three numerical examples illustrate this statement.
Keywords: best uniform rational approximations, rational approximations on finite sets, Remez algorithm, Werner algorithm, selection of eigenvalues in Werner algorithm.
Received: 01.08.2015
Bibliographic databases:
Document Type: Article
UDC: 517.518.84
MSC: 65D15, 41A20
Language: Russian
Citation: O. E. Galkin, S. Yu. Galkina, “On rational approximations of functions and eigenvalue selection in Werner algorithm”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 25:3 (2015), 297–305
Citation in format AMSBIB
\Bibitem{GalGal15}
\by O.~E.~Galkin, S.~Yu.~Galkina
\paper On rational approximations of functions and eigenvalue selection in Werner algorithm
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2015
\vol 25
\issue 3
\pages 297--305
\mathnet{http://mi.mathnet.ru/vuu485}
\elib{https://elibrary.ru/item.asp?id=24237237}
Linking options:
  • https://www.mathnet.ru/eng/vuu485
  • https://www.mathnet.ru/eng/vuu/v25/i3/p297
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    ������� ����������� ������������. ����������. ��������. ������������ �����
    Statistics & downloads:
    Abstract page:275
    Full-text PDF :180
    References:45