dbo:abstract
|
- En mathématiques, une racine d'un polynôme P(X) est une valeur α telle que P(α) = 0. C'est donc une solution de l'équation polynomiale P(x) = 0 d'inconnue x, ou encore, un zéro de la fonction polynomiale associée. Par exemple, les racines de X2 – X sont 0 et 1. Un polynôme non nul à coefficients dans un certain corps peut n'avoir de racines que dans un corps « plus gros », et n'en a jamais plus que son degré. Par exemple X2 – 2, qui est de degré 2 et à coefficients rationnels, n'a aucune racine rationnelle mais a deux racines dans ℝ (donc aussi dans ℂ). Le théorème de d'Alembert-Gauss indique que tout polynôme à coefficients complexes de degré n admet n racines complexes (non nécessairement distinctes). La notion de « racine » se généralise, sous le nom de « zéro », à un polynôme en plusieurs indéterminées. (fr)
- En mathématiques, une racine d'un polynôme P(X) est une valeur α telle que P(α) = 0. C'est donc une solution de l'équation polynomiale P(x) = 0 d'inconnue x, ou encore, un zéro de la fonction polynomiale associée. Par exemple, les racines de X2 – X sont 0 et 1. Un polynôme non nul à coefficients dans un certain corps peut n'avoir de racines que dans un corps « plus gros », et n'en a jamais plus que son degré. Par exemple X2 – 2, qui est de degré 2 et à coefficients rationnels, n'a aucune racine rationnelle mais a deux racines dans ℝ (donc aussi dans ℂ). Le théorème de d'Alembert-Gauss indique que tout polynôme à coefficients complexes de degré n admet n racines complexes (non nécessairement distinctes). La notion de « racine » se généralise, sous le nom de « zéro », à un polynôme en plusieurs indéterminées. (fr)
|
rdfs:comment
|
- En mathématiques, une racine d'un polynôme P(X) est une valeur α telle que P(α) = 0. C'est donc une solution de l'équation polynomiale P(x) = 0 d'inconnue x, ou encore, un zéro de la fonction polynomiale associée. Par exemple, les racines de X2 – X sont 0 et 1. La notion de « racine » se généralise, sous le nom de « zéro », à un polynôme en plusieurs indéterminées. (fr)
- En mathématiques, une racine d'un polynôme P(X) est une valeur α telle que P(α) = 0. C'est donc une solution de l'équation polynomiale P(x) = 0 d'inconnue x, ou encore, un zéro de la fonction polynomiale associée. Par exemple, les racines de X2 – X sont 0 et 1. La notion de « racine » se généralise, sous le nom de « zéro », à un polynôme en plusieurs indéterminées. (fr)
|