Jump to content

Lightness: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
restored content. no reason given for its removal
Line 1: Line 1:
[[Image:ColorValue.jpg|frame|right|Three [[hue]]s in the [[Munsell color system|Munsell color model]]. Each color differs in value from top to bottom in equal perception steps. The right column undergoes a dramatic change in perceived color.]]
[[]] color ]] in to perception . The .


[[Image:ColorValue.jpg|right]]'''Value''' is a measure of where a particular color lies along the lightness–darkness axis. A color's value is its [[amplitude]]. Various [[color models]] have an explicit term which places the color on a scale from utter [[black]] to pure [[white]]. The [[HSV color space|HSV color model]] and [[Munsell color system|Munsell color model]] have an explicit value, while the [[HLS color space|HSL color model]] uses a related parameter called ''lightness'' instead.
'''Lightness''' (sometimes '''value''') is a property of a [[color]], or a dimension of a [[color space]], that is defined in a way to reflect the subjective brightness perception of a color for humans along a lightness–darkness axis. A color's lightness also corresponds to its [[amplitude]].


Various [[color models]] have an explicit term for this property. The [[Munsell color system|Munsell color model]] uses the term ''value'', while the [[HSL and HSV|HSL color model]] and [[Lab color space]] use the term ''lightness''. The [[HSL and HSV|HSV model]] uses the term ''value'' a little differently: a color with a low value is nearly black, but one with a high value is the pure, fully-saturated color.
the HSV and color a color with a low value is nearly black, one with a high value is the pure color.


In [[subtractive color]] (i.e. paints) value changes can be achieved by adding black or white to the color. However, this also reduces saturation. [[Chiaroscuro]] and [[Tenebrism]] both take advantage of dramatic contrasts of value to heighten drama in art. Artists may also employ [[shading]], subtle manipulation of value.
In [[subtractive color]] i.e. paints value changes can be achieved by adding black or white to the color. However, this also reduces saturation.
[[Chiaroscuro]] and [[Tenebrism]] both take advantage of dramatic contrasts of value to heighten drama in art. Artists may also employ [[shading]], subtle manipulation of value.


==Relationship between lightness, value, and luminance==
==Relationship between lightness, value, and luminance==
The [[Munsell]] [[value (colorimetry)|value]] has long been used as a [[perceptually uniform]] lightness scale. A question of interest is the relationship between the Munsell value scale and the [[luminance (relative)|relative luminance]]. Aware of the [[Weber–Fechner law]], Munsell remarked "Should we use a logarithmic curve or curve of squares?"<ref>{{cite journal|title=The early development of the Munsell system|first=Rolf G.|last=Kuehni|volume=27|issue=1|pages=20–27|doi=10.1002/col.10002|year=2002|month=February|journal=Color Research & Application}}</ref> Neither option turned out to be quite correct; scientists eventually converged on a roughly cube-root curve, consistent with the [[Stevens power law]] for brightness perception, reflecting the fact that lightness is proportional to the number of nerve impulses per nerve fiber per unit time.<ref>{{cite journal|title=Light Energy and Brightness Sensation|first=Robert W. G.|last=Hunt|year=1957|month=May 18|pages=1026|volume=179|issue=4568| journal=Nature|doi=10.1038/1791026a0}}</ref> The remainder of this section is a chronology of lightness approximations, leading to CIELAB.


''Note'': Munsell's V runs from 0 to 10, while Y typically runs from 0 to 100 (often interpreted as a percent). Typically, the relative luminance is normalized so that the "reference white" (say, [[magnesium oxide]]) has a tristimulus value of Y=100. Since the reflectance of magnesium oxide (MgO) relative to the [[diffuser (optics)#Perfect reflecting diffuser|perfect reflecting diffuser]] is 97.5%, V=10 corresponds to Y=100/97.5%≈102.6 if MgO is used as the reference.<ref>{{cite book| url=http://books.google.com/books?id=hNDS1C6x0WYC&pg=PA200&dq=0.975+OR+97.5+%22magnesium+oxide%22&lr=&ei=ga7cR46xA5fayATUq8zgAQ&sig=84lZP2ZdpOhg8XIxhRxr8Lix4Sw#PPA200,M1|title=Light Vision Color|first=Arne|last=Valberg|publisher=John Wiley and Sons|year=2006|isbn=0470849029|page=200}}</ref>
;1943 : Newhall, Nickerson, and Judd prepare a report for the [[Optical Society of America]]. They suggest a quintic parabola (relating the reflectance in terms of the value).<ref>{{cite journal|year=1943|month=May|title=Final report of the O.S.A. subcommittee on the spacing of the Munsell colors|volume=33|issue=7|pages=385–418|last=Newhall|first=Sidney M.|coauthors=Nickerson, Dorothy; Judd, Deane B| url=http://www.opticsinfobase.org/abstract.cfm?URI=josa-33-7-385|doi=10.1364/JOSA.33.000385|journal=Journal of the Optical Society of America}}</ref>


[[Image:Lightness approximations.svg|thumb|right|500px| the lightness is 50% for a luminance of around 18% relative to the reference white.]]
; 1943 : Using Table II of the O.S.A. report, Moon and Spencer express the value in terms of the luminance.<ref>{{cite journal|journal=[[JOSA]]|title=Metric based on the composite color stimulus|first=Parry|last=Moon|coauthors=Spencer, Domina Eberle|volume=33|issue=5|month=May|year=1943|pages=270–277|url=http://www.opticsinfobase.org/abstract.cfm?URI=josa-33-5-270|doi=10.1364/JOSA.33.000270}}</ref>


'''1920''': Priest ''et al.'' provide a basic estimate of the Munsell value (with Y running from 0 to 1 in this case):<ref>{{citation|first=Irwin G.|last=Priest|last2=Gibson|first2=K.S.|last3=McNicholas|first3=H.J.|title=An examination of the Munsell color system. I: Spectral and total reflection and the Munsell scale of Value|series=Technical paper 167|page=27|issue=3|publisher=United States Bureau of Standards|year=1920|month=September}}</ref>
; 1944 : Saunderson and Milner introduce a subtractive constant in the previous expression, for a better fit to the Munsell value.<ref>{{cite journal|journal=[[JOSA]]|title=Further study of ω space|last=Saunderson|first=Jason L.|coauthors=Milner, B.I.|volume=34|issue=3|pages=167–173|year=1944|month=March| url=http://www.opticsinfobase.org/abstract.cfm?URI=josa-34-3-167|doi=10.1364/JOSA.34.000167}}</ref> Later, Jameson and Hurvich claim that this corrects for simultaneous [[contrast effect]]s.<ref>{{cite journal|first=Leo M.|last=Hurvich|coauthors=Jameson, Dorothea|title=An Opponent-Process Theory of Color Vision|journal=[[Psychological Review]]|pages=384–404|month=November|year=1957|volume=64|issue=6|pmid=13505974|url=http://content.apa.org/journals/rev/64/6,%20Pt.1/384|doi=10.1037/h0041403}}</ref><ref>{{cite journal|first=Jameson|last=Dorothea|coauthors=Leo M., Hurvich|title=Theory of brightness and color contrast in human vision|journal=Vision Research|month=May|year=1964|volume=4|issue=1-2|pmid=5888593|pages=135–154|doi=10.1016/0042-6989(64)90037-9}}</ref>


:<math>V=10 \sqrt{Y}</math>
;1955 : Ladd and Pinney of [[Eastman Kodak]] are interested in the Munsell value as a perceptually uniform lightness scale for use in [[television]]. After considering one logarithmic and five [[power-law]] functions (per [[Stevens' power law]]), they relate value to reflectance by raising the reflectance to the power of 0.352.<ref>{{cite journal|title=Empirical relationships with the Munsell Value scale|last=Ladd|first=J.H.|coauthors=Pinney, J.E.|journal=Proceedings of the [[Institute of Radio Engineers]]|volume=43|issue=9|pages=1137|year=1955|month=September|doi=10.1109/JRPROC.1955.277892| url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4055542&arnumber=4055558}}</ref>


;1964 : Wyszecki simplifies this to:<ref name=gunter>{{cite journal|first=Günther|last=Wyszecki|title=Proposal for a New Color-Difference Formula|pages=1318–1319|year=1963|month=November|volume=53|number=11|journal=[[JOSA]]| url=http://www.opticsinfobase.org/abstract.cfm?URI=josa-53-11-1314|doi=10.1364/JOSA.53.001318}} ''Note:'' The asterisks are not used in the paper.</ref> the lightness is then <math>L^*=116 f(Y/Y_n)-16</math>.
: to:<ref>{{cite journal|first=|last=|title= |=|=|month=November|=|journal=[[JOSA]]| url=http://www.opticsinfobase.org/abstract.cfm?URI=josa--11-|doi=10.1364/JOSA..}} ''Note:'' .</ref> = /-</>

{{-}}
:<math>V^2=1.4742Y-0.004743Y^2</math>

1943: Newhall, Nickerson, and Judd prepare a report for the [[Optical Society of America]]. They suggest a quintic parabola (relating the reflectance in terms of the value)<ref>{{cite journal|year=1943|month=May|title=Final report of the O.S.A. subcommittee on the spacing of the Munsell colors|volume=33|issue=7|pages=385–418|last=Newhall|first=Sidney M.|coauthors=Nickerson, Dorothy; Judd, Deane B| url=http://www.opticsinfobase.org/abstract.cfm?URI=josa-33-7-385|doi=10.1364/JOSA.33.000385|journal=Journal of the Optical Society of America}}</ref>

:<math>Y=1.2219V-0.23111V^2+0.23951V^3-0.021009V^4+0.0008404V^5</math>

1943: Using Table II of the O.S.A. report, Moon and Spencer express the value in terms of the luminance<ref>{{cite journal|journal=[[JOSA]]|title=Metric based on the composite color stimulus|first=Parry|last=Moon|coauthors=Spencer, Domina Eberle|volume=33|issue=5|month=May|year=1943|pages=270–277|url=http://www.opticsinfobase.org/abstract.cfm?URI=josa-33-5-270|doi=10.1364/JOSA.33.000270}}</ref>

:<math>V=5 (Y/19.77)^{0.426}=1.4 Y^{0.426}</math>

1944: Saunderson and Milner introduce a subtractive constant in the previous expression, for a better fit to the Munsell value.<ref>{{cite journal|journal=[[JOSA]]|title=Further study of ω space|last=Saunderson|first=Jason L.|coauthors=Milner, B.I.|volume=34|issue=3|pages=167–173|year=1944|month=March| url=http://www.opticsinfobase.org/abstract.cfm?URI=josa-34-3-167|doi=10.1364/JOSA.34.000167}}</ref> Later, Jameson and Hurvich claim that this corrects for simultaneous [[contrast effect]]s.<ref>{{cite journal|first=Leo M.|last=Hurvich|coauthors=Jameson, Dorothea|title=An Opponent-Process Theory of Color Vision|journal=[[Psychological Review]]|pages=384–404|month=November|year=1957|volume=64|issue=6|pmid=13505974|url=http://content.apa.org/journals/rev/64/6,%20Pt.1/384|doi=10.1037/h0041403}}</ref><ref>{{cite journal|first=Jameson|last=Dorothea|coauthors=Leo M., Hurvich|title=Theory of brightness and color contrast in human vision|journal=Vision Research|month=May|year=1964|volume=4|issue=1-2|pmid=5888593|pages=135–154|doi=10.1016/0042-6989(64)90037-9}}</ref>

:<math>V=2.357 Y^{0.343}-1.52</math>

1955: Ladd and Pinney of [[Eastman Kodak]] are interested in the Munsell value as a perceptually uniform lightness scale for use in [[television]]. After considering one logarithmic and five [[power-law]] functions (per [[Stevens' power law]]), they relate value to reflectance by raising the reflectance to the power of 0.352<ref>{{cite journal|title=Empirical relationships with the Munsell Value scale|last=Ladd|first=J.H.|coauthors=Pinney, J.E.|journal=Proceedings of the [[Institute of Radio Engineers]]|volume=43|issue=9|pages=1137|year=1955|month=September|doi=10.1109/JRPROC.1955.277892| url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4055542&arnumber=4055558}}</ref>

:<math>V=2.217 Y^{0.352}-1.324</math>

Realizing this is quite close to the cube root, they simplify it to

:<math>V=2.468 Y^{1/3}-1.636</math>

'''1958''': Glasser ''et al.'' define the lightness as ten times the Munsell value (so that the lightness ranges from 0 to 100):<ref>{{cite journal|title=Cube-root color coordinate system|first=L.G.|last=Glasser|coauthors=A.H. McKinney, C.D. Reilly, and P.D. Schnelle|journal=[[JOSA]]|volume=48|issue=10|pages=736–740|year=1958|month=October| url=http://www.opticsinfobase.org/abstract.cfm?URI=josa-48-10-736|doi=10.1364/JOSA.48.000736}}</ref>

:<math>L^*=25.29 Y^{1/3} - 18.38</math>

'''1964''': Wyszecki simplifies this to:<ref name=gunter>{{cite journal|first=Günther|last=Wyszecki|title=Proposal for a New Color-Difference Formula|pages=1318–1319|year=1963|month=November|volume=53|number=11|journal=[[JOSA]]| url=http://www.opticsinfobase.org/abstract.cfm?URI=josa-53-11-1314|doi=10.1364/JOSA.53.001318}} ''Note:'' The asterisks are not used in the paper.</ref>

:<math>W^*=25Y^{1/3}-17</math>

This formula approximates the Munsell value function for <math>1% < Y < 98%</math> (it is not applicable for Y<1%) and is used for the [[CIE 1964 color space]].

'''1976''': [[CIELAB]] uses the following formula:

:<math>L^* = 116 (Y/Y_n)^{1/3}-16</math>

where <math>Y_n</math> is the Y tristimulus value of a "specified white object" and is subject to the restriction <math>Y/Y_n > 0.01</math>. Pauli removes this restriction by computing a [[linear extrapolation]] which maps Y/Y<sub>n</sub>=0 to L<sup>*</sup>=0 and is tangent to the formula above at the point at which the linear extension takes effect. First, the transition point is determined to be <math>Y/Y_n=(6/29)^3 \approx 0.008856</math>, then the slope of <math>(29/3)^3 \approx 903.3</math> is computed. This gives the two-part function:<ref>{{cite journal|first=Hartmut K.A.|last=Pauli|title=Proposed extension of the CIE recommendation on "Uniform color spaces, color spaces, and color-difference equations, and metric color terms"|journal=[[JOSA]]|volume=66|issue=8|pages=866–867|year=1976| url=http://www.opticsinfobase.org/abstract.cfm?URI=josa-66-8-860|doi=10.1364/JOSA.66.000866}}</ref>

:<math>f(u)= \left\{\begin{array}{ll}\frac{841}{108}u + \frac{4}{29}, & u \le (6/29)^3 \\ \\
u^{1/3}, & u > (6/29)^3\end{array}\right.</math>

The lightness is then <math>L^*=116 f(Y/Y_n)-16</math>.


==References==
==References==
{{reflist}}
[[Image:Lightness approximations.svg|thumb|right|500px|Notice how the lightness is 50% for a luminance of around 18% relative to the reference white.]]
{{Reflist}}


==External links==
==External links==
Line 31: Line 77:


[[de:Helligkeit (Farbe)]]
[[de:Helligkeit (Farbe)]]
[[no:Valør]]
[[no:Lyshet]]
[[no:Lyshet]]
[[no:Valør]]
[[pt:Luminosidade (cor)]]
[[pt:Luminosidade (cor)]]
[[ru:Светлота (цвет)]]
[[ru:Светлота (цвет)]]

Revision as of 05:13, 29 June 2009

Lightness is a property of a color, or a dimension of a color space, that is defined in a way to reflect the subjective brightness perception of a color for humans. The Munsell value is an example of a lightness scale.

Value is a measure of where a particular color lies along the lightness–darkness axis. A color's value is its amplitude. Various color models have an explicit term which places the color on a scale from utter black to pure white. The HSV color model and Munsell color model have an explicit value, while the HSL color model uses a related parameter called lightness instead.

In the HSV and Munsell color models, a color with a low value is nearly black, while one with a high value is the pure color.

The image shows three hues in the Munsell color model. Each color differs in value from top to bottom in equal perception steps. The right column undergoes a dramatic change in perceived color.

In subtractive color, i.e. paints, value changes can be achieved by adding black or white to the color. However, this also reduces saturation.

Chiaroscuro and Tenebrism both take advantage of dramatic contrasts of value to heighten drama in art. Artists may also employ shading, subtle manipulation of value.

Relationship between lightness, value, and luminance

The Munsell value has long been used as a perceptually uniform lightness scale. A question of interest is the relationship between the Munsell value scale and the relative luminance. Aware of the Weber–Fechner law, Munsell remarked "Should we use a logarithmic curve or curve of squares?"[1] Neither option turned out to be quite correct; scientists eventually converged on a roughly cube-root curve, consistent with the Stevens power law for brightness perception, reflecting the fact that lightness is proportional to the number of nerve impulses per nerve fiber per unit time.[2] The remainder of this section is a chronology of lightness approximations, leading to CIELAB.

Note: Munsell's V runs from 0 to 10, while Y typically runs from 0 to 100 (often interpreted as a percent). Typically, the relative luminance is normalized so that the "reference white" (say, magnesium oxide) has a tristimulus value of Y=100. Since the reflectance of magnesium oxide (MgO) relative to the perfect reflecting diffuser is 97.5%, V=10 corresponds to Y=100/97.5%≈102.6 if MgO is used as the reference.[3]

Observe that the lightness is 50% for a luminance of around 18% relative to the reference white.

1920: Priest et al. provide a basic estimate of the Munsell value (with Y running from 0 to 1 in this case):[4]

1933: Munsell, Sloan, and Godlove launch a study on the Munsell neutral value scale, considering several proposals relating the relative luminance to the Munsell value, and suggest:[5][6]

1943: Newhall, Nickerson, and Judd prepare a report for the Optical Society of America. They suggest a quintic parabola (relating the reflectance in terms of the value):[7]

1943: Using Table II of the O.S.A. report, Moon and Spencer express the value in terms of the luminance:[8]

1944: Saunderson and Milner introduce a subtractive constant in the previous expression, for a better fit to the Munsell value.[9] Later, Jameson and Hurvich claim that this corrects for simultaneous contrast effects.[10][11]

1955: Ladd and Pinney of Eastman Kodak are interested in the Munsell value as a perceptually uniform lightness scale for use in television. After considering one logarithmic and five power-law functions (per Stevens' power law), they relate value to reflectance by raising the reflectance to the power of 0.352:[12]

Realizing this is quite close to the cube root, they simplify it to

1958: Glasser et al. define the lightness as ten times the Munsell value (so that the lightness ranges from 0 to 100):[13]

1964: Wyszecki simplifies this to:[14]

This formula approximates the Munsell value function for (it is not applicable for Y<1%) and is used for the CIE 1964 color space.

1976: CIELAB uses the following formula:

where is the Y tristimulus value of a "specified white object" and is subject to the restriction . Pauli removes this restriction by computing a linear extrapolation which maps Y/Yn=0 to L*=0 and is tangent to the formula above at the point at which the linear extension takes effect. First, the transition point is determined to be , then the slope of is computed. This gives the two-part function:[15]

The lightness is then .

References

  1. ^ Kuehni, Rolf G. (2002). "The early development of the Munsell system". Color Research & Application. 27 (1): 20–27. doi:10.1002/col.10002. {{cite journal}}: Unknown parameter |month= ignored (help)
  2. ^ Hunt, Robert W. G. (1957). "Light Energy and Brightness Sensation". Nature. 179 (4568): 1026. doi:10.1038/1791026a0. {{cite journal}}: Unknown parameter |month= ignored (help)
  3. ^ Valberg, Arne (2006). Light Vision Color. John Wiley and Sons. p. 200. ISBN 0470849029.
  4. ^ Priest, Irwin G.; Gibson, K.S.; McNicholas, H.J. (1920), An examination of the Munsell color system. I: Spectral and total reflection and the Munsell scale of Value, Technical paper 167, United States Bureau of Standards, p. 27 {{citation}}: Unknown parameter |month= ignored (help)
  5. ^ Munsell, A.E.O. (1933). "Neutral value scales. I. Munsell neutral value scale". JOSA. 23 (11): 394–411. doi:10.1364/JOSA.23.000394. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help) Note: This paper contains a historical survey stretching to 1760.
  6. ^ Munsell, A.E.O. (1933). "Neutral value scales. II. A comparison of results and equations describing value scales". JOSA. 23 (12): 419–425. doi:10.1364/JOSA.23.000419. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  7. ^ Newhall, Sidney M. (1943). "Final report of the O.S.A. subcommittee on the spacing of the Munsell colors". Journal of the Optical Society of America. 33 (7): 385–418. doi:10.1364/JOSA.33.000385. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  8. ^ Moon, Parry (1943). "Metric based on the composite color stimulus". JOSA. 33 (5): 270–277. doi:10.1364/JOSA.33.000270. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  9. ^ Saunderson, Jason L. (1944). "Further study of ω space". JOSA. 34 (3): 167–173. doi:10.1364/JOSA.34.000167. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  10. ^ Hurvich, Leo M. (1957). "An Opponent-Process Theory of Color Vision". Psychological Review. 64 (6): 384–404. doi:10.1037/h0041403. PMID 13505974. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  11. ^ Dorothea, Jameson (1964). "Theory of brightness and color contrast in human vision". Vision Research. 4 (1–2): 135–154. doi:10.1016/0042-6989(64)90037-9. PMID 5888593. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  12. ^ Ladd, J.H. (1955). "Empirical relationships with the Munsell Value scale". Proceedings of the Institute of Radio Engineers. 43 (9): 1137. doi:10.1109/JRPROC.1955.277892. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  13. ^ Glasser, L.G. (1958). "Cube-root color coordinate system". JOSA. 48 (10): 736–740. doi:10.1364/JOSA.48.000736. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  14. ^ Wyszecki, Günther (1963). "Proposal for a New Color-Difference Formula". JOSA. 53 (11): 1318–1319. doi:10.1364/JOSA.53.001318. {{cite journal}}: Unknown parameter |month= ignored (help) Note: The asterisks are not used in the paper.
  15. ^ Pauli, Hartmut K.A. (1976). "Proposed extension of the CIE recommendation on "Uniform color spaces, color spaces, and color-difference equations, and metric color terms"". JOSA. 66 (8): 866–867. doi:10.1364/JOSA.66.000866.