\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

An inertial subgradient extragradient method with Armijo type step size for pseudomonotone variational inequalities with non-Lipschitz operators in Banach spaces

  • *Corresponding author: Oluwatosin Temitope Mewomo

    *Corresponding author: Oluwatosin Temitope Mewomo

The first author is supported by the University of KwaZulu-Natal Doctoral Scholarship. The second author is funded by the University of KwaZulu-Natal Postdoctoral Fellowship. The third author is supported by the National Research Foundation (NRF) of South Africa Incentive Funding for Rated Researchers (Grant Number 119903)

Abstract / Introduction Full Text(HTML) Figure(2) / Table(2) Related Papers Cited by
  • In this paper, we study the pseudomonotone variational inequality problems with non-Lipschitz operators. We propose an inertial subgradient extragradient method with Halpern technique and Armijo type step size for approximating the solution of the problem in the framework of 2-uniformly convex real Banach spaces. We prove that the sequence generated by our proposed method converges strongly to the solution of the problem under some mild conditions and without the weak sequential continuity condition often assumed by authors in solving pseudomonotone variational inequality problems. Finally, we provide some numerical experiments for the proposed method in comparison with other existing methods in the literature. Our result extends and improves several of the existing results in the current literature in this direction.

    Mathematics Subject Classification: 47H09, 47H10, 49J20, 49J40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Top left: m = 15; Top right: m = 30; Bottom left: m = 45; Bottom right: m = 60

    Figure 2.  Top left: Case Ⅰ; Top right: Case II; Bottom left: Case Ⅲ; Bottom right: Case Ⅳ

    Table 1.  Numerical results for Example 5.1

    Cases Alg. 1.5 Alg. 1.7 App.7.1 App. 7.2 Alg. 3.2
    m = 15 No. of Iter. 19 31 24 33 14
    CPU time (sec) 8.2375 5.3746 3.7576 5.3048 5.8052
    m = 30 No. of Iter. 23 33 26 44 18
    CPU time (sec) 11.6430 6.3741 4.7479 7.8673 6.9292
    m = 45 No. of Iter. 25 40 29 46 20
    CPU time (sec) 9.6496 8.3209 5.6280 9.5082 6.3000
    m = 60 No. of Iter. 26 43 31 51 24
    CPU time (sec) 9.5374 10.1644 6.5321 11.4672 6.5011
     | Show Table
    DownLoad: CSV

    Table 2.  Numerical results for Example 5.2

    Alg. 1.5 Alg. 1.7 App.7.1 App. 7.2 Alg. 3.2
    Case Ⅰ No. of Iter. 30 20 39 26 9
    CPU time (sec) 0.0169 0.0104 0.0102 0.0102 0.0107
    Case Ⅱ No. of Iter. 19 18 26 33 8
    CPU time (sec) 0.0164 0.0099 0.0091 0.0096 0.0111
    Case Ⅲ No. of Iter. 16 19 33 26 9
    CPU time (sec) 0.0181 0.0106 0.0124 0.0132 0.0144
    Case Ⅳ No. of Iter. 35 20 39 32 9
    CPU time (sec) 0.0171 0.0093 0.0094 0.0098 0.0104
     | Show Table
    DownLoad: CSV
  • [1] T. O. Alakoya and O. T. Mewomo, Viscosity S-iteration method with inertial technique and self-adaptive step size for split variational inclusion, equilibrium and fixed point problems, Comput. Appl. Math., 41 (2022), Paper No. 39, 31 pp. doi: 10.1007/s40314-021-01749-3.
    [2] T. O. AlakoyaO. T. Mewomo and Y. Shehu, Strong convergence results for quasimonotone variational inequalities, Math. Methods Oper. Res., 95 (2022), 249-279.  doi: 10.1007/s00186-022-00780-2.
    [3] T. O. AlakoyaA. O. E. Owolabi and O. T. Mewomo, An inertial algorithm with a self-adaptive step size for a split equilibrium problem and a fixed point problem of a finite family of strict pseudo-contractions, J. Nonlinear Var. Anal., 5 (2021), 803-829. 
    [4] T. O. Alakoya, V. A. Uzor, O. T. Mewomo and J.-C. Yao, On a system of monotone variational inclusion problems with fixed-point constraint, J. Inequal. Appl., 2022 (2022), Art No. 47, 30 pp. doi: 10.1186/s13660-022-02782-4.
    [5] Y. I. Alber, Metric and generalized projection operators in Banach spaces: Properties and applications, Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Lecture Notes in Pure and Appl. Math., Dekker, New York, 178 (1996), 15-50.
    [6] Y. Alber and J. L. Li, The connection between the metric and generalized projection operators in Banach spaces, Acta Math. Sin., 23 (2007), 1109-1120.  doi: 10.1007/s10114-005-0718-y.
    [7] V. Amarachi UzorT. O. Alakoya and O. T. Mewomo, Strong convergence of a self-adaptive inertial Tseng's extragradient method for pseudomonotone variational inequalities and fixed point problems, Open Math., 20 (2022), 234-257.  doi: 10.1515/math-2022-0030.
    [8] K. Aoyama and F. Kohsaka, Strongly relatively nonexpansive sequences generated by firmly nonexpansive-like mappings, Fixed Point Theory Appl., 95 (2014), 13 pp. doi: 10.1186/1687-1812-2014-95.
    [9] J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley & Sons, Inc., New York, 1984.
    [10] C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities. Applications to Free Boundary Problems, John Wiley & Sons, Inc., New York, 1984.
    [11] K. BallE. A. Carlen and E. H. Lieb, Sharp uniform convexity and smoothness inequalities for trace norms, Invent. Math., 115 (1994), 463-482.  doi: 10.1007/BF01231769.
    [12] G. Cai and S. Bu, Modified extragradient methods for variational inequality problems and fixed point problems for an infinite family of nonexpansive mappings in Banach spaces, J. Global Optim., 55 (2013), 437-457.  doi: 10.1007/s10898-012-9883-6.
    [13] G. CaiA. GibaliO. S. Iyiola and Y. Shehu, A new double-projection method for solving variational inequalities in Banach spaces, J. Optim. Theory Appl., 178 (2018), 219-239.  doi: 10.1007/s10957-018-1228-2.
    [14] Y. CensorA. Gibali and S. Reich, Extensions of Korpelevich's extragradient method for the variational inequality problem in Euclidean space, Optim., 61 (2012), 1119-1132.  doi: 10.1080/02331934.2010.539689.
    [15] Y. CensorA. Gibali and S. Reich, Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim. Methods Software, 26 (2011), 827-845.  doi: 10.1080/10556788.2010.551536.
    [16] Y. CensorA. Gibali and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optimization Theory Appl., 148 (2011), 318-335.  doi: 10.1007/s10957-010-9757-3.
    [17] C. E. Chidume and M. O. Nnakwe, Convergence theorems of subgradient extragradient algorithm for solving variational inequalities and a convex feasibility problem, Fixed Point Theory Appl., (2018), Paper No. 16, 14 pp. doi: 10.1186/s13663-018-0641-4.
    [18] S. V. DenisovV. V. Semenov and L. M. Chabak, Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators, Cybern. Syst. Anal., 51 (2015), 757-765.  doi: 10.1007/s10559-015-9768-z.
    [19] R. Der and D. Lee, Large-margin classification in Banach spaces, In. Artif. Intelli. Stat., (2007), 91-98.
    [20] A. GibaliS. Reich and R. Zalas, Outer approximation methods for solving variational inequalities in Hilbert space, Optimization, 66 (2017), 417-437.  doi: 10.1080/02331934.2016.1271800.
    [21] E. C. Godwin, T. O. Alakoya, O. T. Mewomo and J.-C. Yao, Relaxed inertial Tseng extragradient method for variational inequality and fixed point problems, Appl. Anal., (2022). doi: 10.1080/00036811.2022.2107913.
    [22] E. C. GodwinC. Izuchukwu and O. T. Mewomo, An inertial extrapolation method for solving generalized split feasibility problems in real Hilbert spaces, Boll. Unione Mat. Ital., 14 (2021), 379-401.  doi: 10.1007/s40574-020-00272-3.
    [23] E. C. Godwin, C. Izuchukwu and O. T. Mewomo, Image restoration using a modified relaxed inertial method for generalized split feasibility problems, Math. Methods Appl. Sci., (2022). doi: 10.1002/mma.8849.
    [24] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73 (1967), 957-961.  doi: 10.1090/S0002-9904-1967-11864-0.
    [25] A. N. Iusem and M. Nasri, Korpelevich's method for variational inequality problems in Banach spaces, J. Global Optim., 50 (2011), 59-76.  doi: 10.1007/s10898-010-9613-x.
    [26] C. IzuchukwuG. N. Ogwo and O. T. Mewomo, An inertial method for solving generalized split feasibility problems over the solution set of monotone variational inclusions, Optimization, 71 (2022), 583-611.  doi: 10.1080/02331934.2020.1808648.
    [27] S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim., 13 (2002), 938-945.  doi: 10.1137/S105262340139611X.
    [28] E. N. Khobotov, Modification of the extragradient method for solving variational inequalities and certain optimization problems, USSR Comput. Math. Math. Phys., 27 (1989), 120-127. 
    [29] D. Kinderlehrer and  G. StampacchiaAn Introduction to Variational Inequalities and Their Applications, Pure and Applied Mathematics, 88. Academic Press, Inc., New York-London, 1980. 
    [30] G. M. Korpelevič, An extragradient method for finding sadlle points and for other problems, Ekon. Mat. Metody, 12 (1976), 747-756. 
    [31] R. Kraikaew and S. Saejung, Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 163 (2014), 399-412.  doi: 10.1007/s10957-013-0494-2.
    [32] L. J. LinM. F. YangQ. H. Ansari and G. Kassay, Existence results for Stampacchia and Minty type implicit variational inequalities with multivalued maps, Nonlinear Anal. Theory Methods Appl., 61 (2005), 1-19.  doi: 10.1016/j.na.2004.07.038.
    [33] J. Mashregi and M. Nasri, Forcing strong convergence of Korpelevich's method in Banach spaces with applications in game theory, Nonlinear Anal., 72 (2010), 2086-2099.  doi: 10.1016/j.na.2009.10.009.
    [34] N. Nadezhkina and W. Takahashi, Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 128 (2006), 191-201.  doi: 10.1007/s10957-005-7564-z.
    [35] G. N. Ogwo, T. O. Alakoya and O. T. Mewomo, Iterative algorithm with self-adaptive step size for approximating the common solution of variational inequality and fixed point problems, Optimization, (2021). doi: 10.1080/02331934.2021.1981897.
    [36] G. N. OgwoT. O. Alakoya and O. T. Mewomo, Inertial iterative method with self-adaptive step size for finite family of split monotone variational inclusion and fixed point problems in Banach spaces, Demonstr. Math., 55 (2022), 193-216.  doi: 10.1515/dema-2022-0005.
    [37] G. N. OgwoC. Izuchukwu and O. T. Mewomo, A modified extragradient algorithm for a certain class of split pseudo-monotone variational inequality problem, Numer. Algebra Control Optim., 12 (2022), 373-393.  doi: 10.3934/naco.2021011.
    [38] G. N. OgwoC. Izuchukwu and O. T. Mewomo, Inertial methods for finding minimum-norm solutions of the split variational inequality problem beyond monotonicity, Numer. Algorithms, 88 (2022), 1419-1456.  doi: 10.1007/s11075-021-01081-1.
    [39] G. N. Ogwo, C. Izuchukwu, Y. Shehu and O. T. Mewomo, Convergence of relaxed inertial subgradient extragradient methods for quasimonotone variational inequality problems, J. Sci. Comput., 90 (2022), Art. 10, 35 pp. doi: 10.1007/s10915-021-01670-1.
    [40] M. A. OlonaT. O. AlakoyaA. O.-E. Owolabi and O. T. Mewomo, Inertial shrinking projection algorithm with self-adaptive step size for split generalized equilibrium and fixed point problems for a countable family of nonexpansive multivalued mappings, Demonstr. Math., 54 (2021), 47-67.  doi: 10.1515/dema-2021-0006.
    [41] B. T. Polyak, Some methods of speeding up the convergence of iteration methods, U.S.S.R. Comput. Math. and Math. Phys., 4 (1964), 1-17. 
    [42] S. ReichD. V. ThongQ. L. DongX. H. Li and V. T. Dung, New algorithms and convergence theorems for solving variational inequalities with non-Lipschitz mappings, Numer. Algorithms, 87 (2021), 527-549.  doi: 10.1007/s11075-020-00977-8.
    [43] S. Saejung and P. Yotkaew, Approximation of zeros of inverse strongly monotone operator in Banach spaces, Nonlinear Anal., 75 (2012), 742-750.  doi: 10.1016/j.na.2011.09.005.
    [44] Y. ShehuQ. L. Dong and D. Jiang, Single projection method for pseudo-monotone variational inequality in Hilbert spaces, Optimization, 68 (2018), 385-409.  doi: 10.1080/02331934.2018.1522636.
    [45] Y. ShehuO. S. Iyiola and S. Reich, A modified inertial subgradient extragradient method for solving variational inequalities, Optim. Eng., 23 (2022), 421-449.  doi: 10.1007/s11081-020-09593-w.
    [46] B. TanS. Li and X. Qin, Self-adaptive inertial single projection methods for variational inequalities involving non-Lipschitz and Lipschitz operators with their applications to optimal control problems, Appl. Numer. Math., 170 (2021), 219-241.  doi: 10.1016/j.apnum.2021.07.022.
    [47] D. V. Thong, Y. Shehu and O. S. Iyiola, A new iterative method for solving pseudomonotone variational inequalities with non-Lipschitz operators, Comp. Applied Math., 39 (2020), Art. No. 108, 24 pp. doi: 10.1007/s40314-020-1136-6.
    [48] D. V. ThongN. T. Vinh and Y. J. Cho, Accelerated subgradient extragradient methods for variational inequality problems, J. Sci. Comput., 80 (2019), 1438-1462.  doi: 10.1007/s10915-019-00984-5.
    [49] M. Tian and B.-N. Jiang, Weak convergence theorem for a class of split variational inequality problems and applications in Hilbert space, J. Ineq. Appl., (2017), Paper No. 123, 17 pp. doi: 10.1186/s13660-017-1397-9.
    [50] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16 (1991), 1127-1138.  doi: 10.1016/0362-546X(91)90200-K.
    [51] Y. YaoM. Aslam NoorK. Inayat NoorY. Liou and H. Yaqoob, Modified extragradient methods for a system of variational inequalities in Banach spaces, Acta Appl. Math., 110 (2010), 1211-1224.  doi: 10.1007/s10440-009-9502-9.
    [52] H. ZhangY. Xu and J. Zhang, Reproducing kernel Banach spaces for machine learning, J. Mach. Learn. Res., 10 (2009), 2741-2775.  doi: 10.1109/IJCNN.2009.5179093.
  • 加载中

Figures(2)

Tables(2)

SHARE

Article Metrics

HTML views(1877) PDF downloads(170) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return