The reduced scalar Helmholtz equation for a transversely inhomogeneous half‐space supplemented with an outgoing radiation condition and an appropriate boundary condition on the initial‐value plane defines a direct acoustic propagation model. This elliptic formulation admits a factorization and is subsequently equivalent to a first‐order Weyl pseudodifferential equation which is recognized as an extended parabolic propagation model. Perturbation treatments of the appropriate Weyl composition equation result in a systematic development of approximate wave theories which extend the narrow‐angle, weak‐inhomogeneity, and weak‐gradient ordinary parabolic (Schrödinger) approximation. The analysis further provides for the formulation and exact solution of a multidimensional nonlinear inverse problem appropriate for ocean acoustic and seismic studies. The wave theories foreshadow computational algorithms, the inclusion of range‐dependent effects, and the extension to (1) the vector formulation appropriate for elastic media and (2) the bilinear formulation appropriate for acoustic field coherence.

1.
F. D. Tappert, “The parabolic approximation method,” in Wave Propagation in Underwater Acoustics, Lecture Notes in Physics No. 70, edited by J. B. Keller and J. S. Papadakis (Springer‐Verlag, New York, 1977), p. 224. This article contains a brief historical survey of the parabolic approximation method referencing numerous applications made to wide‐ranging areas of physics.
2.
V. A.
Fock
, “
The field of a plane wave near the surface of a conducting body
,”
J. Phys. U.S.S.R.
10
,
399
(
1946
).
3.
M. A.
Leontovich
and
V. A.
Fock
, “
Solution of the problem of propagation of electromagnetic waves along the earth’s surface by the method of parabolic equation
,”
J. Phys. U.S.S.R.
10
,
13
(
1946
).
4.
H.
Bremmer
, “
The W. K.B. approximation as the first term of a geometrical‐optical series
,”
Commun. Pure Appl. Math.
4
,
105
(
1951
).
5.
J.
Corones
, “
Bremmer series that correct parabolic approximations
,”
J. Math. Anal. Appl.
50
,
361
(
1975
).
6.
J.
Corones
and
R. J.
Krueger
, “
Higher order parabolic approximations to time‐independent wave equations
,”
J. Math. Phys.
24
,
2301
(
1983
).
7.
V. I.
Klyatskin
and
V. I.
Tatarskii
,
Zh. Eksp. Teor. Fiz.
58
,
624
(
1970
)
[“
The parabolic equation approximation for propagation of waves in a medium with random inhomogeneities
,”
Sov. Phys. JETP
31
,
335
(
1970
)].
8.
P.‐L.
Chow
, “
Application of function space integrals to problems in wave propagation in random media
,”
J. Math. Phys.
13
,
1224
(
1972
).
9.
P.‐L.
Chow
, “
Perturbation methods in stochastic wave propagation
,”
SIAM Rev.
17
(
1
),
57
(
1975
).
10.
P.‐L.
Chow
, “
A functional phase‐integral method and applications to the laser beam propagation in random media
,”
J. Stat. Phys.
12
(
2
),
93
(
1975
).
11.
C. M.
Rose
and
I. M.
Besieris
, “
Nth‐order multifrequency coherence functions: A functional path integral approach
,”
J. Math. Phys.
20
, (
7
),
1530
(
1979
).
12.
C. M.
Rose
and
I. M.
Besieris
, “
Nth‐order multifrequency coherence functions: A functional path integral approach. II
,”
J. Math. Phys.
21
(
8
),
2114
(
1980
).
13.
J. F.
Claerbout
, “
Course grid calculations of waves in inhomogeneous media with applications to delineation of complicated seismic structure
,”
Geophysics
35
,
407
(
1970
).
14.
J. F.
Claerbout
, “
Toward a unified theory of reflector mapping
,”
Geophysics
36
,
467
(
1971
).
15.
T.
Landers
and
J. F.
Claerbout
, “
Numerical calculations of elastic waves in laterally inhomogeneous media
,”
J. Geophys. Res.
77
,
1476
(
1972
).
16.
J. A.
Hudson
, “
A parabolic approximation for elastic waves
,”
Wave Motion
2
,
207
(
1980
).
17.
J. J.
McCoy
, “
A parabolic theory of stress wave propagation through inhomogeneous linearly elastic solids
,”
J. Appl. Mech.
44
,
462
(
1977
).
18.
J.
Corones
,
B.
DeFacio
, and
R. J.
Krueger
, “
Parabolic approximations to the time‐independent elastic wave equation
,”
J. Math. Phys.
23
(
4
),
577
(
1982
).
19.
S. T.
McDaniel
, “
Propagation of normal modes in the parabolic approximation
,”
J. Acoust. Soc. Am.
57
,
307
(
1975
).
20.
S. T.
McDaniel
, “
Parabolic approximation for underwater sound propagation
,”
J. Acoust. Soc. Am.
58
,
1178
(
1975
).
21.
D. R.
Palmer
, “
Eikonal approximation and the parabolic equation
,”
J. Acoust. Soc. Am.
60
,
343
(
1976
).
22.
D. R. Palmer, “An Introduction to the Application of Feynman Path Integrals to Sound Propagation in the Ocean,” Naval Research Laboratory Report No. 8148. 1978.
23.
D. R.
Palmer
, “
A path‐integral approach to the parabolic approximation. I
,”
J. Acoust. Soc. Am.
66
(
3
),
862
(
1979
).
24.
J. A. DeSanto, “Connection between the solutions of the Helmholtz and parabolic equations for sound propagation,” in Proceedings of the Oceanic Acoustic Modelling Conference, No. 17, edited by W. Bachmann and R. B. Williams (STI, Saclanteen, 1975), p. 43‐1.
25.
J. A.
DeSanto
, “
Relation between the solutions of the Helmholtz and parabolic equations for sound propagation
,”
J. Acoust. Soc. Am.
62
(
2
),
295
(
1977
).
26.
J. A.
DeSanto
,
J. S.
Perkins
, and
R. N.
Baer
, “
A correction to the parabolic approximation
,”
J. Acoust. Soc. Am.
64
(
6
),
1664
(
1978
).
27.
H. K.
Brock
,
R. N.
Buchal
, and
C. W.
Spofford
, “
Modifying the sound speed profile to improve the accuracy of the parabolic‐equation technique
,”
J. Acoust. Soc. Am.
62
(
3
),
543
(
1977
).
28.
L. B. Dozier and C. W. Spofford, “Extensions of the parabolic equation model for high‐angle bottom‐interacting paths,” Report SAI‐78‐712‐WA, Science Applications, Inc., December 1977.
29.
S. M. Flatté, R. F. Dashen, W. H. Munk, K. M. Watson, and F. Zacharia‐sen, Sound Transmission Through a Fluctuating Ocean (Cambridge U.P., Cambridge, 1978).
30.
R.
Dashen
, “
Path integrals for waves in random media
,”
J. Math. Phys.
20
(
5
),
894
(
1979
).
31.
M. J.
Beran
and
J. J.
McCoy
, “
Propagation through an anisotropic random medium
,”
J. Math. Phys.
15
,
1901
(
1974
).
32.
M. J.
Beran
and
J. J.
McCoy
, “
Propagation through an anisotropic random medium—An integro‐differential formulation
,”
J. Math. Phys.
17
,
1186
(
1976
).
33.
J. J.
McCoy
and
M. J.
Beran
, “
Propagation of beamed signals through inhomogeneous media: A diffraction theory
,”
J. Acoust. Soc. Am.
59
,
1142
(
1976
).
34.
J. J.
McCoy
and
M. J.
Beran
, “
Directional spectral spreading in randomly inhomogeneous media
,”
J. Acoust. Soc. Am.
66
,
1468
(
1979
).
35.
I. M.
Besieris
and
F. D.
Tappert
, “
Kinetic equation for the quantized motion of a particle in a randomly perturbed potential field
,”
J. Math. Phys.
14
,
1829
(
1973
).
36.
I. M.
Besieris
and
F. D.
Tappert
, “
Stochastic wave‐kinetic theory in the Liouville approximation
,”
J. Math. Phys.
17
,
734
(
1976
).
37.
H. L. Wilson and F. D. Tappert, “Acoustic propagation in random oceans using the transport equation,” Report SAI‐78‐639‐LJ, Science Applications, Inc., April 1978.
38.
F. D.
Tappert
and
R. H.
Hardin
, “
Applications of the split‐step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations
,”
SIAM Rev.
15
,
423
(A)(
1973
).
39.
H. K. Brock, unpublished work, as reported in Ref. 28.
40.
R. M.
Fitzgerald
, “
Helmholtz equation as an initial value problem with application to acoustic propagation
,”
J. Acoust. Soc. Am.
57
,
839
(
1975
).
41.
L. E.
Estes
and
G.
Fain
, “
Numerical technique for computing the wide‐angle acoustic field in an ocean with range‐dependent velocity profiles
,”
J. Acoust. Soc. Am.
62
(
1
),
38
(
1977
).
42.
F. R. DiNapoii and R. L. Deavenport, “Numerical models of underwater acoustic propagation,” in Ocean Acoustics, edited by J. A. DeSanto (Springer‐Verlag, New York, 1979), p. 79.
43.
L. Fishman and J. J. McCoy, “Derivation and application of extended parabolic wave theories. II. Path integral representations,” J. Math. Phys., (following paper).
44.
J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw‐Hill, New York, 1964).
45.
I. M. Gel’fand and G. E. Shilov, Generalized Functions. Vol. 1. Properties and Operations (Academic, New York, 1964).
46.
M. Reed and B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis (Academic, New York, 1972).
47.
L.
Cohen
, “
Generalized phase‐space distribution functions
,”
J. Math. Phys.
7
,
781
(
1966
).
48.
B. S.
Agarwal
and
E.
Wolf
, “
Calculus for functions of noncommuting operators and general phase‐space methods in quantum mechanics. I. Mapping theorems and ordering of functions of noncommuting operators
,”
Phys. Rev. D
2
(
10
),
2161
(
1970
).
49.
M. M. Mizrahi, “Correspondence rules and path integrals,” in Feynman Path Integrals, Lecture Notes in Physics No. 106, edited by S. A. Albe‐verio et al.. (Springer‐Verlag, New York, 1979), p. 234.
50.
J. S.
Dowker
, “
Path integrals and ordering rules
,”
J. Math. Phys.
17
(
10
),
1873
(
1976
).
51.
W. Garczynski, “Dependence of the Feynman path integral on discretization: the case of a spinless particle in an external electromagnetic field,” in Functional Integration: Theory and Applications, edited by J.‐P. Antoine and E. Tirapegui (Plenum, New York, 1980), p. 175.
52.
F.
Langouche
,
D.
Roekaerts
, and
E.
Tirapegui
, “
Discretization problems of functional integrals in phase space
,”
Phys. Rev. D
20
(
2
),
419
(
1979
).
53.
L.
Hörmander
, “
The Weyl calculus of pseudo‐differential operators
,”
Comm. Pure Appl. Math.
32
,
359
(
1979
).
54.
M. R.
Hoare
, “
The linear gas
,”
Adv. Chem. Phys.
20
,
135
(
1971
).
55.
L. Fishman, “Mathematical Methods in Quantum and Statistical Mechanics,” Ph.D. thesis, Harvard University, 1977.
56.
C.
DeWitt‐Morette
,
A.
Maheshwari
, and
B.
Nelson
, “
Path integration in nonrelativistic quantum mechanics
,”
Phys. Rep.
50
(
5
), (March
1979
).
57.
G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge U.P., Cambridge, 1966).
58.
J. R. Taylor, Scattering Theory: The Quantum Theory on Nonrelativistic Collisions (Wiley, New York, 1972).
59.
R. R. Greene, “The rational approximation to the acoustic wave equation with bottom interaction,” J. Acoust. Soc. Am. (to be published).
60.
L. Fishman and J. J. McCoy, “Direct and inverse wave propagation theories and the factorized Helmholtz equation” (1982) (unpublished).
61.
D. C.
Stickler
and
P. A.
Deift
, “
Inverse problem for a stratified ocean and bottom
,”
J. Acoust. Soc. Am.
70
(
6
),
1723
(
1981
).
62.
P.
Deift
and
E.
Trubowitz
, “
Inverse scattering on the line
,”
Comm. Pure Appl. Math.
32
,
121
(
1979
).
63.
I. M.
Gel’fand
and
B. M.
Levitan
, “
On the determination of a differential equation from its spectral function
,”
Izv. Akad. Nauk SSSR
15
,
309
(
1951
)
[
I. M.
Gel’fand
and
B. M.
Levitan
,
Am. Math. Soc. Transl.
1
,
253
(
1956
)].
64.
M. E. Taylor, Pseudodijferential Operators (Princeton U.P., Princeton, NJ, 1981).
65.
F. Treves, Introduction to Pseudodijferential and Fourier Integral Operators. Vol. 1. Pseudodijferential Operators (Plenum, New York, 1980).
66.
F. Treves, Introduction to Pseudodijferential and Fourier Integral Operators. Vol. 2. Fourier Integral Operators (Plenum, New York, 1980).
67.
References to significant works in the theory of pseudodifferential operators can be found in two recent book reviews:
R.
Beals
,
Bull. Am. Math. Soc.
3
(
3
),
1069
(
1980
);
M. E.
Taylor
,
Bull. Am. Math. Soc.
5
(
1
),
73
(
1981
).
68.
R. Bellman and G. M. Wing, An Introduction to Invariant Imbedding (Wiley, New York, 1975).
69.
M. E. Davison, “A general approach to splitting and invariant imbedding for linear wave equations,” Iowa State University, Ames, Iowa, 1982 (preprint).
70.
S.
Frankenthal
,
M. J.
Beran
, and
A.
Whitman
, “
Caustic corrections using coherence theory
,”
J. Acoust. Soc. Am.
71
,
348
(
1982
).
71.
S.
Coen
, “
On the elastic profiles of a layered medium from reflection data. I. Plane‐wave sources
,”
J. Acoust. Soc. Am.
70
(
1
),
172
(
1981
).
72.
S.
Coen
, “
On the elastic profiles of a layered medium from reflection data. II. Impulsive point source
,”
J. Acoust. Soc. Am.
70
(
5
),
1473
(
1981
).
This content is only available via PDF.
You do not currently have access to this content.