An efficient formulation of the analytic energy gradient for the single and double excitation coupled‐cluster method that includes a perturbational estimate of the effects of connected triple excitations, denoted CCSD(T), is presented. The formulation presented here has a smaller computational cost than any previous formulation, and the algebraic manipulations that lead to the additional savings may be applied generally to the analytic gradient of Mo/ller–Plesset perturbation theory energies. The energy contribution from connected triple excitations scales as n3on4v+n4on3v, and the additional work needed for the gradient scales as 2n3on4v+2n4on3v, where no is the number of doubly occupied orbitals and nv is the number of unoccupied orbitals. The new formulation has been implemented in an efficient set of programs that utilize highly vectorized algorithms and has been used to investigate the equilibrium structures, harmonic vibrational frequencies, infrared intensities, and energy separation of cis‐ and trans‐HONO.

1.
J. Almlöf and P. R. Taylor, Adv. Quantum Chem. (in press).
2.
J.
Čiz̆ek
and
J.
Paldus
,
Int. J. Quantum Chem. Symp.
5
,
359
(
1971
).
3.
S. A.
Kucharski
and
R. J.
Bartlett
,
Adv. Quantum Chem.
18
,
281
(
1986
).
4.
R. J.
Bartlett
,
J. Phys. Chem.
93
,
1697
(
1989
).
5.
See, for example,
R. J.
Bartlett
,
J. D.
Watts
,
S. A.
Kucharski
, and
J.
Noga
,
Chem. Phys. Lett.
165
,
513
(
1990
).
6.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
7.
A. P.
Rendell
,
T. J.
Lee
, and
P. R.
Taylor
,
J. Chem. Phys.
92
,
7050
(
1990
).
8.
T. J.
Lee
,
A. P.
Rendell
, and
P. R.
Taylor
,
J. Chem. Phys.
93
,
6636
(
1990
).
9.
T. J. Lee, A. P. Rendell, and P. R. Taylor (unpublished).
10.
T. J.
Lee
and
G. E.
Scuseria
,
J. Chem. Phys.
93
,
489
(
1990
).
11.
T. J.
Lee
and
J. E.
Rice
,
J. Chem. Phys.
94
,
1215
(
1991
).
12.
G. E.
Scuseria
and
T. J.
Lee
,
J. Chem. Phys.
93
,
5851
(
1990
).
13.
A. P.
Rendell
and
T. J.
Lee
,
J. Chem. Phys.
94
,
6219
(
1991
).
14.
G.
Fitzgerald
,
R. J.
Harrison
, and
R. J.
Bartlett
,
J. Chem. Phys.
85
,
5143
(
1986
).
15.
J.
Gauss
and
D.
Cremer
,
Chem. Phys. Lett.
153
,
303
(
1988
).
16.
E. A.
Salter
,
G. W.
Trucks
, and
R. J.
Bartlett
,
J. Chem. Phys.
90
,
1752
(
1989
).
17.
J. A.
Pople
,
M.
Head-Gordon
, and
K.
Raghavachari
,
J. Chem. Phys.
87
,
5968
(
1987
).
18.
J.
Gauss
and
D.
Cremer
,
Chem. Phys. Lett.
163
,
549
(
1989
).
19.
G. E.
Scuseria
,
J. Chem. Phys.
94
,
442
(
1991
).
20.
T. J.
Lee
,
A. P.
Rendell
, and
P. R.
Taylor
,
J. Phys. Chem.
94
,
5463
(
1990
).
21.
N. C.
Handy
and
H. F.
Schaefer
,
J. Chem. Phys.
81
,
5031
(
1984
).
22.
J. E.
Rice
,
R. D.
Amos
,
N. C.
Handy
,
T. J.
Lee
, and
H. F.
Schaefer
,
J. Chem. Phys.
85
,
963
(
1986
).
23.
T. J.
Lee
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys.
87
,
7074
(
1987
).
24.
J.
Gerratt
and
I. M.
Mills
,
J. Chem. Phys.
49
,
1719
(
1968
).
25.
R.
Ahlrichs
,
P.
Scharf
, and
C.
Ehrhardt
,
J. Chem. Phys.
82
,
890
(
1985
).
26.
M.
Page
,
P.
Saxe
,
G. F.
Adams
, and
B. H.
Lengsfield
,
J. Chem. Phys.
81
,
434
(
1984
).
27.
J. E.
Rice
,
T. J.
Lee
, and
N. C.
Handy
,
J. Chem. Phys.
88
,
7011
(
1988
).
28.
E. D.
Simandiras
,
J. E.
Rice
,
T. J.
Lee
,
R. D.
Amos
, and
N. C.
Handy
,
J. Chem. Phys.
88
,
3187
(
1988
).
29.
E. D.
Simandiras
,
J. F.
Gaw
, and
N. C.
Handy
,
Chem. Phys. Lett.
141
,
166
(
1987
).
30.
N. C.
Handy
,
R. D.
Amos
,
J. F.
Gaw
,
J. E.
Rice
, and
E. D.
Simandiras
,
Chem. Phys. Lett.
120
,
151
(
1985
).
31.
I. L.
Alberts
and
N. C.
Handy
,
J. Chem. Phys.
89
,
2107
(
1988
).
32.
A. P. Rendell, T. J. Lee, and A. Komornicki, Chem. Phys. Lett. (in press).
33.
Y.
Guan
,
G. C.
Lynch
, and
D. L.
Thompson
,
J. Chem. Phys.
87
,
6957
(
1987
).
34.
Y.
Guan
and
D. L.
Thompson
,
Chem. Phys.
139
,
147
(
1989
).
35.
S.
Hennig
,
A.
Untch
,
R.
Schinke
,
M.
Nonella
, and
J. R.
Huber
,
Chem. Phys.
129
,
93
(
1989
).
36.
R. N.
Dixon
and
H.
Rieley
,
Chem. Phys.
137
,
307
(
1989
).
37.
S. J.
Wategaonkar
,
J. H.
Shan
, and
R.
Vasudev
,
Chem. Phys.
139
,
283
(
1989
).
38.
S.
Nakamura
,
M.
Takahashi
,
R.
Okazaki
, and
K.
Morokuma
,
J. Am. Chem. Soc.
109
,
4142
(
1987
).
39.
K. B.
Wiberg
,
Inorg. Chem.
27
,
3694
(
1988
).
40.
J. A.
Darsey
and
D. L.
Thompson
,
J. Phys. Chem.
91
,
3168
(
1987
).
41.
H. U.
Suter
and
J. R.
Huber
,
Chem. Phys. Lett.
155
,
203
(
1989
).
42.
S. R.
Langhoff
and
E. R.
Davidson
,
Int. J. Quantum Chem.
8
,
61
(
1974
).
43.
T. H.
Dunning
,
J. Chem. Phys.
55
,
716
(
1971
).
44.
S.
Huzinaga
,
J. Chem. Phys.
42
,
1293
(
1965
).
45.
T.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
46.
J.
Almlöf
and
P. R.
Taylor
,
J. Chem. Phys.
86
,
4070
(
1987
).
47.
F. B. van Duijneveldt, IBM Research Report RJ 945 (1971).
48.
M.
Page
,
P.
Saxe
,
G. F.
Adams
, and
B. H.
Lengsfield
,
J. Chem. Phys.
81
,
434
(
1984
).
49.
T. J. Lee, Ph.D. thesis, University of California, Berkeley, 1986.
50.
TITAN is a set of electronic structure programs, written by T. J. Lee, A. P. Rendell, and J. E. Rice.
51.
MOLECULE-SWEDEN is an electronic structure program system written by J. Almlöf, C. W. Bauschlicher, M. R. A. Blomberg, D. P. Chong, A. Heiberg, S. R. Langhoff, P.-Å. Malmqvist, A. P. Rendell, B. O. Roos, P. E. M. Siegbahn, and P. R. Taylor.
52.
D. J.
Finnigan
,
A. P.
Cox
, and
A. H.
Brittain
,
J. Chem. Soc. Faraday Trans. II
68
,
548
(
1972
).
53.
A. P.
Cox
,
A. H.
Brittain
, and
D. J.
Finnigan
,
J. Chem. Soc. Faraday Trans. II
67
,
2179
(
1971
).
54.
C. M.
Deeley
and
I. M.
Mills
,
Mol. Phys.
54
,
23
(
1985
).
55.
T. J.
Lee
and
P. R.
Taylor
,
Int. J. Quantum Chem. Symp.
23
,
199
(
1989
).
56.
D. A.
Clabo
,
W. D.
Allen
,
R. B.
Remington
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
Chem. Phys.
123
,
187
(
1988
).
57.
J.
Murto
,
M.
Rasanen
,
A. A.
Spiala
, and
T.
Lotta
,
J. Mol. Struct. (Theochem)
122
,
213
(
1985
).
This content is only available via PDF.
You do not currently have access to this content.