Insoluble Langmuir monolayers are investigated in the presence of dipolar forces which can have two origins: permanent dipoles in neutral monolayers and induced dipoles in charged monolayers. The main effect of the additional long‐range repulsive interactions is to stabilize undulating phases at thermodynamic equilibrium. Phase diagrams are obtained in two limits: close to the liquid–gas critical point via a Ginzburg–Landau expansion of the free energy (mainly within a mean‐field approximation), and at low temperatures by free energy minimization. Possible applications of this theory to experiments at the liquid–gas, liquid expanded–liquid condensed, and solid–liquid transitions are discussed.

1.
For a general review see: A. W. Adamson, Physical Chemistry of Surfaces (Wiley, New York, 1982);
G. L. Gaines, Insoluble Monolayers at Liquid Gas Interfaces (Wiley, New York, 1966).
2.
G. A.
Hawkins
and
G. B.
Benedek
,
Phys. Rev. Lett.
32
,
524
(
1974
);
M. W.
Kim
and
D. S.
Cannell
,
Phys. Rev. Lett.
33
,
889
(
1975
); ,
Phys. Rev. Lett.
M. W.
Kim
and
D. S.
Cannell
,
Phys. Rev. A
13
,
411
(
1976
).
3.
S. R.
Middleton
,
M.
Iwasaki
,
N. R.
Pallas
, and
B. A.
Pethica
,
Proc. R. Soc. London Ser. A
396
,
143
(
1984
);
N. R.
Pallas
, and
B. A.
Pethica
,
Langmuir
1
,
509
(
1985
).
4.
See, e.g.,
G. M.
Bell
,
L. L.
Combs
, and
L. J.
Dunne
,
Chem. Rev.
81
,
15
(
1981
);
J. P.
Legre
,
G.
Albinet
,
J. L.
Firpo
, and
A. M. S.
Tremblay
,
Phys. Rev. A
30
,
2720
(
1984
), and references therein.
5.
I.
Langmuir
,
J. Chem. Phys.
1
,
756
(
1933
).
6.
J. G.
Kirkwood
,
Publ. Am. Assoc. Advmt. Sci.
21
,
157
(
1943
).
7.
Th.
Rasing
,
Y. N.
Sen
,
M. W.
Kim
, and
S.
Grubb
,
Phys. Rev. Lett.
55
,
2903
(
1985
).
8.
B. M.
Abraham
,
K.
Miyano
,
S. Q.
Xu
, and
J. B.
Ketterson
,
Phys. Rev. Lett.
49
,
1643
(
1985
).
9.
H. M.
McConnell
,
L. K.
Tamm
, and
R. M.
Weis
,
Proc. Natl. Acad. Sci.
81
,
3249
(
1984
).
10.
M.
Lösche
and
M.
Möhwald
,
Eur. Biophys.
11
,
35
(
1985
);
M.
Lösche
,
E.
Sackmann
, and
M.
Möhwald
,
Ber. Bunsenges. Phys. Chem.
87
,
848
(
1983
);
M.
Lösche
and
M.
Möhwald
,
J. Phys. Lett. (Paris)
45
,
L785
(
1984
).
11.
B.
Moore
,
C. M.
Knobler
,
D.
Broseta
, and
F.
Rondelez
,
J. Chem. Soc., Faraday Trans. 2
82
,
1753
(
1986
).
12.
C. A. Helm, L. Laxhuber, M. Lösche, and M. Möhwald, J. Colloid Polym. Sci. (in press).
13.
P. A.
Forsyth
, Jr.
,
S.
Marcelja
,
D. J.
Mitchell
, and
B. W.
Ninham
,
Biochem. Biophys. Acta
469
,
335
(
1977
), and references therein.
14.
M. Plaisance, Ph.D thesis, University of Paris, 1975 (unpublished);
M.
Plaisance
and
L.
Terminassian‐Saraga
,
C. R. Acad. Sci. (Paris)
270
,
1269
(
1970
).
15.
D.
Andelman
,
F.
Brochard
,
P. G.
deGennes
, and
J. F.
Joanny
,
C. R. Acad. Sci. (Paris)
301
,
675
(
1985
).
16.
S. R.
Middleton
and
B. A.
Pethica
,
J. Chem. Soc. Faraday Symp.
16
,
109
(
1981
).
17.
M. W.
Kim
and
D. S.
Cannell
,
Phys. Rev. A
14
,
1299
(
1976
).
18.
P.
Pieranski
,
Phy. Rev. Lett.
45
,
569
(
1980
).
19.
P. Flory, Principles of Polymer Chemistry, (Cornell University, Ithaca, 1971).
20.
A cubic phase with fourfold symmetry has always a higher energy in our two‐dimensional problem than the smectic one. However, a cubic phase exists for a similar problem of microphase separation of block copolymers in three dimensions:
L.
Leibler
,
Macromolecules
13
,
1602
(
1980
).
21.
S. A.
Brazovskii
,
Zh. Eksp. Teor. Fiz.
68
,
175
(
1975
)
[
S. A.
Brazovskii
,
Sov. Phys. JETP
41
,
85
(
1975
)].
22.
T.
Garel
and
S.
Doniach
,
Phys. Rev. B
26
,
325
(
1982
).
23.
The equivalent magnetic problem for thin magnetic films has been considered by
C.
Kooy
and
U.
Enz
,
Phillips Res. Rep.
15
,
7
(
1960
).
24.
If the hexagonal solution is omitted, the resulting phase diagram have both first‐ and second‐order transitions between stripe (S) and the isotropic phases (L and G). These lines meet at a tricritical point, δ≅0.7. The mean field theory for a very similar model, the spin one model, was calculated by
Blume
,
Emery
, and
Griffiths
,
Phys. Rev. A
4
,
1071
(
1971
).
25.
R. E.
Rosensweig
,
M.
Zahn
, and
R.
Shumovich
,
J. Mag. Mag. Mat.
39
,
127
(
1983
);
For a review on ferrofluids see R. E. Rosensweig, Ferrohydro‐dynamics (Cambridge University, New York, 1985).
This content is only available via PDF.
You do not currently have access to this content.