Skip to main content
Log in

Changes in serum parameters associated with iron metabolism in male rat exposed to lead

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Due to the severe hazardous influences of lead (Pb2+) on iron-related diseases, the effects of Pb2+ on serum parameters associated with iron metabolism have been studied in this project. Male Wistar rats weighing 200–250 g were treated with Pb2+ for the short and long period of times. The animals received daily intraperitoneal injection of 100 mg Pb2+ kg−1 body weight (BW) for 5 days and 4 mg kg−1 BW of Pb2+ for 30 and 45 days, respectively. The results show that when animals were treated with both low and high concentrations of Pb2+, serum iron concentration decreased markedly, by 23.2, 32.8, and 39.9 %, while the sera TIBC and transferrin concentrations increased significantly (p < 0.05). Following short- and long-term exposures to Pb2+, the percentage of serum transferrin saturation was also decreased in comparison with the untreated control group (p < 0.05). Concentrations of serum copper and ceruloplasmin following Pb2+ treatments also reduced significantly (p < 0.05). The percentage of hematocrit and hemoglobin levels was reduced (p < 0.05) in all Pb2+-treated animals in comparison with the controls. These results suggest that Pb2+ changes the serum parameters related to iron metabolism, which may play an important role in producing iron-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ani M, Moshtaghie AA (1992) The effect of chromium on parameters related to iron metabolism. Biol Trace Elem Res 32:57–64

    Article  PubMed  CAS  Google Scholar 

  2. Auclair S, Feillet-Coudray C, Coudray C, Schneider S, Muckenthaler MU, Mazur A (2006) Mild copper deficiency alters gene expression of proteins involved in iron metabolism. Blood Cells Mol Dis 36:15–20

    Article  PubMed  CAS  Google Scholar 

  3. Beckett WS, Nordberg GF, Clarkson TW (2007) Routes of exposure, dose, and metabolism of metals. In: Nordberg GF, Fowler BA, Nordberg M, Friberg L (eds) Handbook of the toxicology of metals, 3rd edn. Elsevier, Amsterdam, pp 39–64

    Chapter  Google Scholar 

  4. Becking GC, Nordberg M, Nordberg GF (2007) Essential metals: assessing risks from deficiency and toxicity. In: Nordberg GF, Fowler BA, Nordberg M, Friberg L (eds) Handbook of the toxicology of metals, 3rd edn. Elsevier, Amsterdam, pp 163–176

    Chapter  Google Scholar 

  5. Boffi F, Ascone I, Della Longa S, Girasole M, Yalovega G, Soldatov A, Varoli-Piazza A, Congiu-Castellano A (2003) X-ray absorption near-edge spectroscopy of transferrins: a theoretical and experimental probe of the metal site local structure. European Biophys J 32:329–341

    Article  CAS  Google Scholar 

  6. Crowe A, Morgan EH (1997) Effect of dietary cadmium on iron metabolism in growing rats. Toxicol Appl Pharmacol 145:136–146

    Article  PubMed  CAS  Google Scholar 

  7. Dailey HA (2002) Terminal steps of haem biosynthesis. Biochem Soc Trans 30:590–595

    Article  PubMed  CAS  Google Scholar 

  8. Daniell WE, Stockbridge HL, Labbe RF et al (1997) Environmental chemical exposures and disturbances of heme synthesis. Environ Health Perspect 105:37–53

    PubMed  CAS  Google Scholar 

  9. Ellingsen DG, Horn N, Aaseth J (2007) Copper. In: Nordberg GF, Fowler BA, Nordberg M, Friberg L (eds) Handbook of the toxicology of metals, 3rd edn. Elsevier, Amsterdam, pp 529–546

    Chapter  Google Scholar 

  10. Fairbanks VF (1982) In: Tietz NW (ed) Hemoglobin, hemoglobin derivatives and myoglobin in fundamental of clinical chemistry. Saunders, Philadelphia, pp 411–414

    Google Scholar 

  11. Ferreira GC, Zhang JS (2003) Mechanism of 5-aminolevulinate synthase and the role of the protein environment in controlling the cofactor chemistry. Cell Mol Biol 48(8):827–833

    Google Scholar 

  12. Flora SJ, Jeevaratnam K, Kumar D (1993) Preventive effects of sodium molybdate in lead intoxication in rats. Ecotoxicol Environ Saf 26:133–137

    Article  PubMed  CAS  Google Scholar 

  13. Gidlow DA (2004) Lead toxicity. Occup Med 54:76–81

    Article  CAS  Google Scholar 

  14. Goyer RA, Rhyne BC (1973) Pathological effect of lead. Intern Rev Exp Pathol 12:1–77

    CAS  Google Scholar 

  15. Hegazy AA, Zaher MM, Abdel hafez MA, Morsy AA, Saleh RA (2010) Relation between anemia and blood levels of lead, copper, zinc and iron among children. BMC Res Notes 3:133

    Article  PubMed  Google Scholar 

  16. Hellman NE, Gitlin JD (2002) Ceruloplasmin metabolism and function. Annu Rev Nutr 22:439–458

    Article  PubMed  CAS  Google Scholar 

  17. Huebers HA, Eng MJ, Josephson BM, Ekpoom N, Rettmer RL, Labbe RF et al (1987) Plasma iron and transferrin iron-binding capacity evaluated by colorimetric and immunoprecipitation method. Clin Chem 33:273–277

    PubMed  CAS  Google Scholar 

  18. Hunter GA, Ferreira GC (2010) Identification and characterization of an inhibitory metal ion-binding site in ferrochelatase. J Biol Chem 285:41836–41842

    Article  PubMed  CAS  Google Scholar 

  19. Jain NB, Laden F, Culler U, Shankar A, Kazani S, Garshick E (2005) Relation between blood lead levels and childhood anemia in India. Am J Epidemiol 161:968–973

    Article  PubMed  Google Scholar 

  20. Kachmar JF, Moss DW (1976) Enzymes. In: Tietz NW (ed) Enzymes. Saunders, Philadelphia, pp 649–652

    Google Scholar 

  21. Kodama H, Murata Y, Mochizuki YD, Abe YT (1998) Copper and ceruloplasmin metabolism in the LEC rat, an animal model for Wilson disease. J Inher Metab Dis 21:203–206

    Article  PubMed  CAS  Google Scholar 

  22. Kohno H, Taketani S, Tokunaga R (1993) The effect of lead on iron uptake from transferrin in human erythroleukemia (K562) cells. Biometals 6:77–83

    Article  PubMed  CAS  Google Scholar 

  23. Leelakunakorn W, Sriworawit R, Soontaros S (2005) Ceruloplasmin oxidase activity as a biomarker of lead exposure. Occup Health 47:56–60

    Article  CAS  Google Scholar 

  24. Li W-F, Chuang H-Y (2007) Copper deficiency, lead, and paraoxonase: Li et al. respond. Environ Health Perspect 115:A342

    Article  Google Scholar 

  25. Lyn P (2006) Lead toxicity, a review of the literature. Part I: exposure, evaluation and treatment. Altern Med Rev 11:2–22

    Google Scholar 

  26. Masci O, Bongarzone R (1995) Toxicity of lead. In: Castellino N, Castellino P, Sannolo N (eds) Inorganic lead exposure: metabolism and intoxication. Lewis, Boca Raton, pp 203–213

    Google Scholar 

  27. Moore R, Goldberg A, Yeung-Laiwah AA (1987) Lead effects on the heme biosynthetic pathway. Relationship to toxicity. Ann NY Acad Sci 514:191–203

    Article  PubMed  CAS  Google Scholar 

  28. Moshtaghie AA, Badii A (1996) Comparative binding studies of zinc and iron to human serum transferring. Iran J Sci Technol 20:177–188

    CAS  Google Scholar 

  29. Moshtaghie AA, Movahedian A (1994) The effect of nickel on parameters related to iron metabolism. Urmia Med J 4:103–118, in Persian

    Google Scholar 

  30. Moshtaghie AA, Skillen AW (1990) Study of the relationship between aluminium toxicity and heme synthesis. Iran J Med Sci 15:46–52

    Google Scholar 

  31. Moshtaghie AA, Ani M, Taher M (1990) The relationship between aluminium toxicity and iron metabolism in rats. J Sci 1:335–336

    Google Scholar 

  32. Moshtaghie AA, Ani M, Bazrafshan MR (1992) Comparative binding study of aluminum and chromium to human transferrin. Biol Trace Elem Res 32:39–46

    Article  PubMed  CAS  Google Scholar 

  33. Moshtaghie AA, Taghikhani M, Sandoughchin M (1997) Cadmium interaction with iron metabolism. Clin Chem Enzyme Comm 7:307–316

    CAS  Google Scholar 

  34. Moshtaghie AA, Ghaffari M (2003) Study of binding of iron and indium to human serum apotransferrin. Iran Biomed J 7:73–77

    CAS  Google Scholar 

  35. Moshtaghie AA, Ani M, Aghadavood E, Fazilati M (2007) Protective effects of selenium and zinc on changes in catecholamine level of brain regions in lead intoxified rat. Pak J Biol Sci l0:2964–2968

    Google Scholar 

  36. Movahedian A, Moshtaghie AA (2000) Changes in parameters related to serum iron metabolism in gallium treated rats. Res Med Sci J 5:60–63, in Persian

    Google Scholar 

  37. Mudipalli A (2007) Lead hepatotoxicity & potential health effects. Indian J Med Res 126:518–527

    PubMed  CAS  Google Scholar 

  38. Nwankwo EA, Ummate I (2006) Environmental lead intoxication and chronic kidney disease: a review. Internet J Nephrol 3(1)

  39. Olivares M, Araya M, Uauy R (2000) Copper homeostasis in infant nutrition: deficit and excess. J Pediatr Gastroenterol Nutr 31:102–112

    Article  PubMed  CAS  Google Scholar 

  40. Piasek M, Kostial K (1996) Experimental studies on reproductive and perinatal effect of lead and cadmium. Environ Manage Health 7:29–34

    Article  Google Scholar 

  41. Ponka P (1997) Tissue-specific regulation of iron metabolism and hem synthesis: distinct control metabolism in erythroid cells. Blood 89:1–25

    PubMed  CAS  Google Scholar 

  42. Ponka P, Tenenbein M, Eaton JW (2007) Iron. In: Nordberg GF, Fowler BA, Nordberg M, Friberg L (eds) Handbook of the toxicology of metals, 3rd edn. Elsevier, Amsterdam, pp 577–588

    Chapter  Google Scholar 

  43. Qian ZM, Xiao DS, Wang Q, Tang PL, Pu YM (1997) Inhibitory mechanism of lead on transferrin-bound iron uptake by rabbit reticulocytes: a fractal analysis. Mol Cell Biochem 173:89–94

    Article  PubMed  CAS  Google Scholar 

  44. Ramesh M, Saravanan M, Kavitha C (2009) Hormonal responses of the fish, Cyprinus carpio, to environmental lead exposure. Afr J Biotechnol 8:4154–4158

    Google Scholar 

  45. Singh B, Dhawan D, Mangal PC, Chand B, Singh N, Trehan PN (1994) Combined action of lead and lithium on essential and nonessential elements in rat blood. Biol Trace Elem Res 46:15–28

    Article  PubMed  CAS  Google Scholar 

  46. Sun H, Li H, Sadler PJ (1999) Transferrin as a metal ion mediator. Chem Rev 99:2817–2842

    Article  PubMed  CAS  Google Scholar 

  47. Suresh C, Dennis AO, Heinz J, Vemuri MC, Chetty CS (2006) Melatonin protection against lead-induced changes in human neuroblastoma cell cultures. Int J Toxicol 25:459–464

    Article  PubMed  CAS  Google Scholar 

  48. Tietz NW (ed) (1986) Textbook of clinical chemistry. Saunders, Philadelphia, p 1351

    Google Scholar 

  49. Varley H, Gowenlock AH, Maurice B (1984) Practical clinical biochemistry, vol 1. William Heinemann, London, pp 935–939

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedram Malekpouri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moshtaghie, M., Malekpouri, P., Dinko, M.R. et al. Changes in serum parameters associated with iron metabolism in male rat exposed to lead. J Physiol Biochem 69, 297–304 (2013). https://doi.org/10.1007/s13105-012-0212-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-012-0212-9

Keywords

Navigation