Skip to main content
Log in

Cytogenetic and oxidative alterations after exposure of cultured human whole blood cells to lithium metaborate dehydrate

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Boron compounds have an ability of supporting antioxidant properties in human and animal tissues. Lithium metaborate dihydrate (LiBO2·2H2O; LMD) is commonly used in nonlinear optic materials, cellular phones and pagers. But, there are limited data on the genotoxic and antioxidant effects of LMD in cultured human whole blood cells. The aim of this study was to evaluate for the genotoxicity and antioxidant/oxidant activity of LMD on human whole blood lymphocytes (n = 5). LMD was applied at various concentrations (0–1,280 µg/ml) to cultured blood samples. Antioxidant/oxidant activity was evaluated by measuring the total oxidant status (TOS) and total antioxidant capacity levels. Micronuclei and chromosomal aberration tests were used in genotoxicity studies. Our results clearly revealed that all tested concentrations of LMD were found to be non-genotoxic when compared to that of the control group. In addition, LMD exhibited antioxidant activities at low concentrations. In addition the TOS levels were not changed at all concentrations of LMD. Consequently, our results clearly demonstrated that LMD is non-genotoxic and it has an important antioxidant potential in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Argust P (1998) Distribution of boron in the environment. Biolog Trace Elem Res 66:131–143

    Article  CAS  Google Scholar 

  • Arslan M, Topaktas M, Rencuzogullari E (2008) The effects of boric acid on sister chromatid exchanges and chromosome aberrations in cultured human lymphocytes. Cytotechnology 56:91–96

    Article  CAS  Google Scholar 

  • Bakke JP (1991) Evaluation of the potential of boric acid to induce unscheduled DNA synthesis, in the in vitro hepatocyte DNA repair assay using the male F-344 rat. US Borax Corp. MRID No. 42038903

  • Balogh N, Gaal T, Ribiczeyene PS, Petri A (2001) Biochemical and antioxidant changes in plasma and erythrocytes of pentathlon horses before and after exercise. Vet Clin Pathol 30:214–218

    Article  Google Scholar 

  • Benhusein GM, Mutch E, Aburawi S, Williams FM (2010) Genotoxic effect induced by hydrogen peroxide in human hepatoma cells using comet assay. Libyan J Med 13:5–10

    Google Scholar 

  • Cacciatore I, Caccuri AM, Di Stefano A, Luisi G, Nalli M, Pinnen F, Ricci G, Sozio P (2003) Synthesis and activity of novel glutathione analogues containing an urethane backbone linkage. Farmaco 58:787–793

    Article  CAS  Google Scholar 

  • Cacciatore I, Caccuri AM, Cocco A, De Maria F, Di Stefano A, Luisi G, Pinnen F, Ricci G, Sozio P, Turella P (2005) Potent isozyme-selective inhibition of human glutathione S-transferase A1-1 by a novel glutathione S-conjugate. Amino Acids 29:255–261

    Article  CAS  Google Scholar 

  • Celikezen FÇ, Türkez H, Togar B, İzgi MS (2014) DNA damaging and biochemical effects of potassium tetraborate. Excli J 13:446–450

  • Cingolani GM, Di Stefano A, Mosciatti B, Napolitani F, Giorgioni G, Ricciutelli M, Claudi F (2000) Synthesis of L-(+)-3-(3-hydroxy-4-pivaloyloxybenzyl)-2,5-diketomorpholine as potential prodrug of L-dopa. Bioorg Med Chem Lett 10:1385–1388

    Article  CAS  Google Scholar 

  • Coban FK, Ince S, Kucukkurt I, Demirel HH, Hazman O (2014) Boron attenuates malathion-induced oxidative stress and acetylcholinesterase inhibition in rats. Drug Chem Toxicol 24:1–9

    Google Scholar 

  • Colak S, Geyikoglu F, Keles ON, Turkez H, Topal A, Unal B (2011) The neuroprotective role of boric acid on aluminum chloride-induced neurotoxicity. Toxicol Ind Health 27:700–710

    Article  CAS  Google Scholar 

  • Di Stefano A, Sozio P, Iannitelli A, Cerasa LS (2009a) New drug delivery strategies for improved Parkinson’s disease therapy. Expert Opin Drug Deliv 6:389–404

    Article  Google Scholar 

  • Di Stefano A, D’Aurizio E, Trubiani O, Grande R, Di Campli E, Di Giulio M, Di Bartolomeo S, Sozio P, Iannitelli A, Nostro A, Cellini L (2009b) Viscoelastic properties of Staphylococcus aureus and Staphylococcus epidermidis mono-microbial biofilms. Microbial Biotechnol 2:634–641

    Article  Google Scholar 

  • Dong L, Gao J, Xie X, Zhou Q (2012) DNA damage and biochemical toxicity of antibiotics in soil on the earthworm Eisenia fetida. Chemosphere 89:44–51

    Article  CAS  Google Scholar 

  • Evans HJ, O’Riordan ML (1975) Human peripheral blood lymphocytes for the analysis of chromosome aberrations in mutagen tests. Mutat Res 31:135–148

    Article  CAS  Google Scholar 

  • EVM (2002) Expert Group on Vitamins and Minerals. Revised review of boron. EVM/99/23/P.REVISEDAUG2002

  • Fenech M, Morley AA (1985) Measurement of micronuclei in lymphocytes. Mutat Res 147:29–36

    Article  CAS  Google Scholar 

  • Geyikoglu F, Turkez H (2005) Protective effect of sodium selenite on genotoxicity to human whole blood cultures induced by aflatoxin B1. Brazil Arch Biol Technol 48:905–910

    Article  CAS  Google Scholar 

  • Geyikoglu F, Turkez H (2007) Acute toxicity of boric acid on energy metabolism of the breast muscle in broiler chickens. Biologia 62:112–117

    Article  CAS  Google Scholar 

  • Geyikoglu F, Turkez H (2008) Boron compounds reduce vanadium tetraoxide genotoxicity in human lymphocytes. Environ Toxicol Pharmacol 26:342–347

    Article  CAS  Google Scholar 

  • Geyikoglu F, Turkez H, Keles SM (2005) The role of fruit juices in the prevention of aluminum sulphate toxicity in human blood in vitro. Fresen Environ Bull 14:878–883

    CAS  Google Scholar 

  • Ghiselli A, Serafini M, Natella F, Scaccini C (2000) Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic Biol Med 29:1106–1114

    Article  CAS  Google Scholar 

  • Heuking S, Iannitelli A, Di Stefano A, Borchard G (2009) Toll-like receptor-2 agonist functionalized biopolymer for mucosal vaccination. Int J Pharm 381:97–105

    Article  CAS  Google Scholar 

  • Hunt CD, Idso JP (1999) Dietary boron as a physiological regulator of the normal inflammatory response: a review and current research progress. J Trace Elem Exp Med 12:221–233

    Article  CAS  Google Scholar 

  • Ince S, Kucukkurt I, Cigerci IH, Fidan AF, Eryavuz A (2010) The effects of dietary boric acid and borax supplementation on lipid peroxidation, antioxidant activity, and DNA damage in rats. J Trace Elem Med Biol 24:161–164

    Article  CAS  Google Scholar 

  • Ince S, Kucukkurt I, Demirel HH, Acaroz DA, Akbel E, Cigerci IH (2014) Protective effects of boron on cyclophosphamide induced lipid peroxidation and genotoxicity in rats. Chemosphere 108:197–204

    Article  CAS  Google Scholar 

  • IPCS (International Program on Chemical Safety) (1985) American Oil Environmental Health Criteria 46. Guidelines for the study of genetic effects in human populations. WHO, Geneva, 45–54

  • Kahraman E, Gürhan İD, Korkmaz M (2013) Investigation of possible genotoxic and cytotoxic effects of differential boron compounds in ccl 62 (hela contaminant) human amniotic ephitelial cell line. Med Sci 2:454–468

  • Korkmaz M, Uzgören E, Bakırdere S, Aydın F, Ataman OY (2007) Effects of dietary boron on cervical cytopathology and on micronucleus frequency in exfoliated buccal cells. Environ Toxicol 22:17–25

    Article  CAS  Google Scholar 

  • Kusano C, Ferrari B (2008) Total antioxidant capacity, a biomarker in biomedical and nutritional studies. J Cell Mol Biol 7:1–15

    CAS  Google Scholar 

  • Landolph JR (1985) Cytotoxicity and negligible genotoxicity of borax and borax ores to cultures mammalian cells. Am J Ind Med 7:31–43

    Article  CAS  Google Scholar 

  • Lantos J, Roth E, Czopf L, Nemes J, Gal I (1997) Monitoring of plasma antioxidant status in different diseases. Acta Chir Hung 36:188–189

    CAS  Google Scholar 

  • Mahabir S, Spitz MR, Barrera SL, Dong YQ, Eastham C, Forman MR (2008) Dietary boron and hormone replacement therapy as risk factors for lung cancer in women. Am J Epidemiol 167:1070–1080

    Article  CAS  Google Scholar 

  • Mc Gregor D, Brown A, Cattanach P, Edwards I, McBride D, Riach C, Caspari W (1988) Responses of the L5178Y tk-/tk- Mouse lymphoma cell forward mutation assay: III. 72 coded chemicals. Environ Mol Mutagen 12:85–154

    Article  CAS  Google Scholar 

  • Miller NJ, Rice-Evans CA, Davies MJ, Gopinathan V, Milner A (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 84:407–412

    Article  CAS  Google Scholar 

  • Pawa S, Ali S (2006) Boron ameliorates fulminant hepatic failure by counteracting the changes associated with the oxidative stress. Chem Biol Interact 160:89–98

    Article  CAS  Google Scholar 

  • Richold M (1998) Boron exposure from consumer products. Biol Trace Elem Res 66:121–129

    Article  CAS  Google Scholar 

  • Rispoli V, Rotiroti D, Carelli V, Liberatore F, Scipione L, Marra R, Giorgioni G, Di Stefano A (2004) Choline pivaloyl esters improve in rats cognitive and memory performances impaired by scopolamine treatment or lesions of the nucleus basalis of Meynert. Neurosci Lett 356:199–202

    Article  CAS  Google Scholar 

  • Schubert DM, Brotherton RJ (2006) Boron: inorganic chemistry. Encyclopedia of Inorganic Chemistry. 2nd Ed. ISBN: 978-0-470-86078-6

  • Sisman T, Turkez H (2010) Toxicologic evaluation of imazalil with particular reference to genotoxic and teratogenic potentials. Toxicol Ind Health 26:641–648

    Article  CAS  Google Scholar 

  • Snell DF, Hilton CL (1968) Encyclopaedia of industrial chemical analysis. Wiley, New York

    Google Scholar 

  • Sozio P, D’Aurizio E, Iannitelli A, Cataldi A, Zara S, Cantalamessa F, Nasuti C, Di Stefano A (2010) Ibuprofen and lipoic acid diamides as potential codrugs with neuroprotective activity. Arch Pharm 343:133–142

    Article  CAS  Google Scholar 

  • Turkez H (2008) Effects of boric acid and borax on titanium dioxide genotoxicity. J Appl Toxicol 28:658–664

    Article  CAS  Google Scholar 

  • Turkez H (2011) The role of ascorbic acid on titanium dioxide-induced genetic damage assessed by the comet assay and cytogenetic tests. Exp Toxicol Pathol 63:453–457

    Article  CAS  Google Scholar 

  • Türkez H, Geyikoglu F (2006) Protective effects of kernite and probertite against titanium dioxide genotoxicity in vitro. 3rd International Boron Symposium, Ankara, Turkey, 475–479

  • Turkez H, Sisman T (2007) Anti-genotoxic effect of hydrated sodium calcium aluminosilicate on genotoxicity to human lymphocytes induced by aflatoxin B1. Toxicol Ind Health 23:83–89

    Article  CAS  Google Scholar 

  • Turkez H, Togar B (2010) The genotoxic and oxidative damage potential of olanzapine in vitro. Toxicol Ind Health 26:583–588

    Article  CAS  Google Scholar 

  • Turkez H, Geyikoglu F, Keles MS (2005) Biochemical response to colloidal bismuth subcitrate: dose-time effect. Biol Trace Elem Res 105:151–158

    Article  Google Scholar 

  • Turkez H, Geyikoglu F, Tatar A, Keleş S, Özkan A (2007) Effects of some boron compounds on peripheral human blood. Z Naturforsch 62:889–896

    CAS  Google Scholar 

  • Turkez H, Tatar A, Hacimuftuoglu A, Ozdemir E (2010) Boric acid as a protector against paclitaxel genotoxicity. Acta Biochim Pol 57:95–97

    CAS  Google Scholar 

  • Turkez H, Geyikoglu F, Mokhtar YI, Togar B (2012a) Eicosapentaenoic acid protects against 2,3,7,8-tetrachlorodibenzo-p-dioxin- induced hepatic toxicity in cultured rat hepatocytes. Cytotechnology 64:15–25

    Article  CAS  Google Scholar 

  • Turkez H, Geyikoglu F, Tatar A, Keles MS, Kaplan I (2012b) The effects of some boron compounds against heavy metal toxicity in human blood. Exp Toxicol Pathol 64:93–101

    Article  CAS  Google Scholar 

  • Vijayalaxmi Reiter RJ, Leal BZ, Meltz ML (1996) Effect of melatonin on mitotic and proliferation indices, and sister chromatid exchange in human blood lymphocytes. Mutat Res 351:187–192

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Çağlar Çelikezen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çelikezen, F.Ç., Toğar, B., Özgeriş, F.B. et al. Cytogenetic and oxidative alterations after exposure of cultured human whole blood cells to lithium metaborate dehydrate. Cytotechnology 68, 821–827 (2016). https://doi.org/10.1007/s10616-014-9833-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-014-9833-x

Keywords

Navigation