Abstract
The essential role of transferrin in mammalian iron metabolism is firmly established. Integral to our understanding of transferrin, studies in hypotransferrinemic mice, a model of inherited transferrin deficiency, have demonstrated that transferrin is essential for iron delivery for erythropoiesis and in the regulation of expression of hepcidin, a hormone that inhibits macrophage and enterocyte iron efflux. Here we investigate a potential role for transferrin in the distribution of three other physiologic metals, manganese, copper, and zinc. We first assessed metal content in transferrin-rich fractions of wild-type mouse sera and demonstrate that although both iron and manganese cofractionated predominantly with transferrin, the absolute levels of manganese are several orders of magnitude lower than those of iron. We next measured metal content in multiple tissues in wild-type and hypotransferrinemic mice of various ages. Tissue metal imbalances were severe for iron and minimal to moderate for some metals in some tissues in hypotransferrinemic mice. Metal levels measured in a transferrin-replete yet hepcidin-deficient and iron-loaded mouse strain suggested that the observed imbalances in tissue copper, zinc, and manganese levels were not all specific to hypotransferrinemic mice or caused directly by transferrin deficiency. Overall, our results suggest that transferrin does not have a primary role in the distribution of manganese, copper, or zinc to tissues and that the abnormalities observed in tissue manganese levels are not attributable to a direct role for transferrin in manganese metabolism but rather are attributable to an indirect effect of transferrin deficiency on hepcidin expression and/or iron metabolism.
Similar content being viewed by others
Abbreviations
- BPS:
-
Bathophenanthrolinedisulfonic acid
- CCS:
-
Copper chaperone for superoxide dismutase
- CV:
-
Column volume
- DMT1:
-
Divalent metal transporter 1
- GF-AAS:
-
Graphite furnace atomic absorption spectrometry
- Hjv:
-
Hemojuvelin
- hpx:
-
Hypotransferrinemic
- ICP-AES:
-
Inductively coupled plasma atomic emission spectroscopy
- SOD1:
-
Copper/zinc superoxide dismutase
- SOD2:
-
Manganese superoxide dismutase
- Tris:
-
Tris(hydroxymethyl)aminomethane
- wt:
-
Wild type
References
Bartnikas TB (2012) Biometals 25:677–686. doi:10.1007/s10534-012-9520-3
Bernstein SE (1987) J Lab Clin Med 110:690–705
Huggenvik JI, Craven CM, Idzerda RL et al (1989) Blood 74:482–486
Trenor CC, Campagna DR, Sellers VM et al (2000) Blood 96:1113–1118
Simpson RJ, Konijn AM, Lombard M et al (1993) J Pathol 171:237–244. doi:10.1002/path.1711710313
Beard JL, Wiesinger JA, Li N, Connor JR (2005) J Neurosci Res 79:254–261. doi:10.1002/jnr.20324
Bartnikas TB, Andrews NC, Fleming MD (2011) Blood 117:630–637. doi:10.1182/blood-2010-05-287359
Vincent JB, Love S (2011) Biochim Biophys Acta 1820:362–378. doi:10.1016/j.bbagen.2011.07.003
Davidsson L, Lönnerdal B, Sandström B et al (1989) J Nutr 119:1461–1464
Jursa T, Smith DR (2009) Toxicol Sci 107:182–193. doi:10.1093/toxsci/kfn231
Bartnikas TB, Steinbicker AU, Campagna DR et al (2013) Haematologica. 98:854–861. doi:10.3324/haematol.2012.074617
Bartnikas TB, Fleming MD (2012) Haematologica. 97:189–192 doi:10.3324/haematol.2011.054031
Prohaska JR, Geissler J, Brokate B, Broderius M (2003) Exp Biol Med (Maywood) 228:959–966
Weydert CJ, Cullen JJ (2010) Nat Protoc 5:51–66. doi:10.1038/nprot.2009.197
Schneider CA, Rasband WS, Eliceiri KW (2012) Nat Methods 9:671–675
Simpson RJ, Cooper CE, Raja KB et al (1992) Biochim Biophys Acta 1156:19–26
Ganz T, Nemeth E (2011) Annu Rev Med 62:347–360. doi:10.1146/annurev-med-050109-142444
Wong PC, Waggoner D, Subramaniam JR et al (2000) Proc Natl Acad Sci USA 97:2886–2891. doi:10.1073/pnas.040461197
Prohaska JR, Broderius M, Brokate B (2003) Arch Biochem Biophys 417:227–234
Malecki EA, Cook BM, Devenyi AG et al (1999) J Neurol Sci 170:112–118
Dickinson TK, Devenyi AG, Connor JR (1996) J Lab Clin Med 128:270–278
Kim J, Buckett PD, Wessling-Resnick M (2013) PLoS ONE 8:e64944. doi:10.1371/journal.pone.0064944
Jouihan HA, Cobine PA, Cooksey RC et al (2008) Mol Med 14:98–108. doi:10.2119/2007-00114.Jouihan
Zhang Y, Li B, Chen C, Gao Z (2009) Biometals 22:251–259. doi:10.1007/s10534-008-9161-8
Klevay LM (2001) J Trace Elem Med Biol 14:237–240. doi:10.1016/S0946-672X(01)80009-2
Vayenas DV, Repanti M, Vassilopoulos A, Papanastasiou DA (1998) Int J Clin Lab Res 28:183–186
Au C, Benedetto A, Aschner M (2008) Neurotoxicology 29:569–576. doi:10.1016/j.neuro.2008.04.022
Yin Z, Jiang H, Lee E-SY et al (2010) J Neurochem 112:1190–1198. doi:10.1111/j.1471-4159.2009.06534.x
Madejczyk MS, Ballatori N (2011) Biochim Biophys Acta. 1818:651–657. doi:10.1016/j.bbamem.2011.12.002
Quadri M, Federico A, Zhao T et al (2012) Am J Hum Genet 90:467–477. doi:10.1016/j.ajhg.2012.01.017
Stamelou M, Tuschl K, Chong WK et al (2012) Mov Disord 27:1317–1322. doi:10.1002/mds.25138
Tuschl K, Clayton PT, Gospe SM Jr et al (2012) Am J Hum Genet 90:457–466. doi:10.1016/j.ajhg.2012.01.018
Acknowledgments
This work was supported by NIH grant K99/R00 DK084122 to T.B.B. We thank Joseph Orchardo and David Murray at the Environmental Chemistry Facility at Brown University for providing assistance with ICP-AES and GF-AAS, Joe Prohaska for providing an aliquot of rabbit anti-CCS antibody for use in immunoblots, and Rick Eisenstein for providing samples of SOD1-deficient mouse tissue.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Herrera, C., Pettiglio, M.A. & Bartnikas, T.B. Investigating the role of transferrin in the distribution of iron, manganese, copper, and zinc. J Biol Inorg Chem 19, 869–877 (2014). https://doi.org/10.1007/s00775-014-1118-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00775-014-1118-5