Skip to main content
Log in

Investigating the role of transferrin in the distribution of iron, manganese, copper, and zinc

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The essential role of transferrin in mammalian iron metabolism is firmly established. Integral to our understanding of transferrin, studies in hypotransferrinemic mice, a model of inherited transferrin deficiency, have demonstrated that transferrin is essential for iron delivery for erythropoiesis and in the regulation of expression of hepcidin, a hormone that inhibits macrophage and enterocyte iron efflux. Here we investigate a potential role for transferrin in the distribution of three other physiologic metals, manganese, copper, and zinc. We first assessed metal content in transferrin-rich fractions of wild-type mouse sera and demonstrate that although both iron and manganese cofractionated predominantly with transferrin, the absolute levels of manganese are several orders of magnitude lower than those of iron. We next measured metal content in multiple tissues in wild-type and hypotransferrinemic mice of various ages. Tissue metal imbalances were severe for iron and minimal to moderate for some metals in some tissues in hypotransferrinemic mice. Metal levels measured in a transferrin-replete yet hepcidin-deficient and iron-loaded mouse strain suggested that the observed imbalances in tissue copper, zinc, and manganese levels were not all specific to hypotransferrinemic mice or caused directly by transferrin deficiency. Overall, our results suggest that transferrin does not have a primary role in the distribution of manganese, copper, or zinc to tissues and that the abnormalities observed in tissue manganese levels are not attributable to a direct role for transferrin in manganese metabolism but rather are attributable to an indirect effect of transferrin deficiency on hepcidin expression and/or iron metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BPS:

Bathophenanthrolinedisulfonic acid

CCS:

Copper chaperone for superoxide dismutase

CV:

Column volume

DMT1:

Divalent metal transporter 1

GF-AAS:

Graphite furnace atomic absorption spectrometry

Hjv:

Hemojuvelin

hpx:

Hypotransferrinemic

ICP-AES:

Inductively coupled plasma atomic emission spectroscopy

SOD1:

Copper/zinc superoxide dismutase

SOD2:

Manganese superoxide dismutase

Tris:

Tris(hydroxymethyl)aminomethane

wt:

Wild type

References

  1. Bartnikas TB (2012) Biometals 25:677–686. doi:10.1007/s10534-012-9520-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Bernstein SE (1987) J Lab Clin Med 110:690–705

    CAS  PubMed  Google Scholar 

  3. Huggenvik JI, Craven CM, Idzerda RL et al (1989) Blood 74:482–486

    CAS  PubMed  Google Scholar 

  4. Trenor CC, Campagna DR, Sellers VM et al (2000) Blood 96:1113–1118

    CAS  PubMed  Google Scholar 

  5. Simpson RJ, Konijn AM, Lombard M et al (1993) J Pathol 171:237–244. doi:10.1002/path.1711710313

    Article  CAS  PubMed  Google Scholar 

  6. Beard JL, Wiesinger JA, Li N, Connor JR (2005) J Neurosci Res 79:254–261. doi:10.1002/jnr.20324

    Article  CAS  PubMed  Google Scholar 

  7. Bartnikas TB, Andrews NC, Fleming MD (2011) Blood 117:630–637. doi:10.1182/blood-2010-05-287359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Vincent JB, Love S (2011) Biochim Biophys Acta 1820:362–378. doi:10.1016/j.bbagen.2011.07.003

    Article  PubMed  Google Scholar 

  9. Davidsson L, Lönnerdal B, Sandström B et al (1989) J Nutr 119:1461–1464

    CAS  PubMed  Google Scholar 

  10. Jursa T, Smith DR (2009) Toxicol Sci 107:182–193. doi:10.1093/toxsci/kfn231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Bartnikas TB, Steinbicker AU, Campagna DR et al (2013) Haematologica. 98:854–861. doi:10.3324/haematol.2012.074617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Bartnikas TB, Fleming MD (2012) Haematologica. 97:189–192 doi:10.3324/haematol.2011.054031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Prohaska JR, Geissler J, Brokate B, Broderius M (2003) Exp Biol Med (Maywood) 228:959–966

    CAS  Google Scholar 

  14. Weydert CJ, Cullen JJ (2010) Nat Protoc 5:51–66. doi:10.1038/nprot.2009.197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Schneider CA, Rasband WS, Eliceiri KW (2012) Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  16. Simpson RJ, Cooper CE, Raja KB et al (1992) Biochim Biophys Acta 1156:19–26

    Article  CAS  PubMed  Google Scholar 

  17. Ganz T, Nemeth E (2011) Annu Rev Med 62:347–360. doi:10.1146/annurev-med-050109-142444

    Article  CAS  PubMed  Google Scholar 

  18. Wong PC, Waggoner D, Subramaniam JR et al (2000) Proc Natl Acad Sci USA 97:2886–2891. doi:10.1073/pnas.040461197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Prohaska JR, Broderius M, Brokate B (2003) Arch Biochem Biophys 417:227–234

    Article  CAS  PubMed  Google Scholar 

  20. Malecki EA, Cook BM, Devenyi AG et al (1999) J Neurol Sci 170:112–118

    Article  CAS  PubMed  Google Scholar 

  21. Dickinson TK, Devenyi AG, Connor JR (1996) J Lab Clin Med 128:270–278

    Article  CAS  PubMed  Google Scholar 

  22. Kim J, Buckett PD, Wessling-Resnick M (2013) PLoS ONE 8:e64944. doi:10.1371/journal.pone.0064944

    Article  PubMed Central  PubMed  Google Scholar 

  23. Jouihan HA, Cobine PA, Cooksey RC et al (2008) Mol Med 14:98–108. doi:10.2119/2007-00114.Jouihan

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Zhang Y, Li B, Chen C, Gao Z (2009) Biometals 22:251–259. doi:10.1007/s10534-008-9161-8

    Article  CAS  PubMed  Google Scholar 

  25. Klevay LM (2001) J Trace Elem Med Biol 14:237–240. doi:10.1016/S0946-672X(01)80009-2

    Article  CAS  PubMed  Google Scholar 

  26. Vayenas DV, Repanti M, Vassilopoulos A, Papanastasiou DA (1998) Int J Clin Lab Res 28:183–186

    Article  CAS  PubMed  Google Scholar 

  27. Au C, Benedetto A, Aschner M (2008) Neurotoxicology 29:569–576. doi:10.1016/j.neuro.2008.04.022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Yin Z, Jiang H, Lee E-SY et al (2010) J Neurochem 112:1190–1198. doi:10.1111/j.1471-4159.2009.06534.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Madejczyk MS, Ballatori N (2011) Biochim Biophys Acta. 1818:651–657. doi:10.1016/j.bbamem.2011.12.002

    Article  PubMed  Google Scholar 

  30. Quadri M, Federico A, Zhao T et al (2012) Am J Hum Genet 90:467–477. doi:10.1016/j.ajhg.2012.01.017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Stamelou M, Tuschl K, Chong WK et al (2012) Mov Disord 27:1317–1322. doi:10.1002/mds.25138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Tuschl K, Clayton PT, Gospe SM Jr et al (2012) Am J Hum Genet 90:457–466. doi:10.1016/j.ajhg.2012.01.018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant K99/R00 DK084122 to T.B.B. We thank Joseph Orchardo and David Murray at the Environmental Chemistry Facility at Brown University for providing assistance with ICP-AES and GF-AAS, Joe Prohaska for providing an aliquot of rabbit anti-CCS antibody for use in immunoblots, and Rick Eisenstein for providing samples of SOD1-deficient mouse tissue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas B. Bartnikas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 564 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrera, C., Pettiglio, M.A. & Bartnikas, T.B. Investigating the role of transferrin in the distribution of iron, manganese, copper, and zinc. J Biol Inorg Chem 19, 869–877 (2014). https://doi.org/10.1007/s00775-014-1118-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1118-5

Keywords

Navigation