Skip to main content
Log in

Gallium uptake by transferrin and interaction with receptor 1

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The kinetics and thermodynamics of Ga(III) exchange between gallium mononitrilotriacetate and human serum transferrin as well as those of the interaction between gallium-loaded transferrin and the transferrin receptor 1 were investigated in neutral media. Gallium is exchanged between the chelate and the C-site of human serum apotransferrin in interaction with bicarbonate in about 50 s to yield an intermediate complex with an equilibrium constant K 1 = (3.9 ± 1.2) × 10−2, a direct second-order rate constant k 1 = 425 ± 50 M−1 s−1 and a reverse second-order rate constant k −1 = (1.1 ± 3) × 104 M−1 s−1. The intermediate complex loses a single proton with proton dissociation constant K 1a = 80 ± 40 nM to yield a first kinetic product. This product then undergoes a modification in its conformation which lasts about 500 s to produce a second kinetic intermediate, which in turn undergoes a final extremely slow (several hours) modification in its conformation to yield the gallium-saturated transferrin in its final state. The mechanism of gallium uptake differs from that of iron and does not involve the same transitions in conformation reported during iron uptake. The interaction of gallium-loaded transferrin with the transferrin receptor occurs in a single very fast kinetic step with a dissociation constant K d = 1.10 ± 0.12 μM and a second-order rate constant k d = (1.15 ± 0.3) × 1010 M−1 s−1. This mechanism is different from that observed with the ferric holotransferrin and suggests that the interaction between the receptor and gallium-loaded transferrin probably takes place on the helical domain of the receptor which is specific for the C-site of transferrin and HFE. The relevance of gallium incorporation by the transferrin receptor-mediated iron-acquisition pathway is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Crichton R (2001) Inorganic biochemistry of iron metabolism. Wiley, Chichester

    Google Scholar 

  2. Bruns CM, Nowalk AJ, Arvai AS, McTigue MA, Vaughan KG, Mietzner TA, McRee DE (1997) Nat Struct Biol 4:11, 919–924

    Google Scholar 

  3. Zuccola HJ (1992) The crystal structure of monoferric human serum transferrin. PhD thesis, Georgia Institute of Technology

  4. Moore SA, Anderson BF, Groom CR, Haridas M, Baker EN (1997) J Mol Biol 274:222–236

    Article  PubMed  CAS  Google Scholar 

  5. Anderson BF, Baker HM, Norris GE, Rumball SV, Baker EN (1990) Nature 344:784–787

    Article  PubMed  CAS  Google Scholar 

  6. Bou Abdallah F, El Hage Chahine JM (2000) J Mol Biol 303:255–266

    Article  CAS  Google Scholar 

  7. Pakdaman R, Bou Abdallah F, El Hage Chahine JM (1999) J Mol Biol 293:1273–1284

    Article  PubMed  CAS  Google Scholar 

  8. Bellounis L, Pakdaman R, El Hage Chahine JM (1996) J Phys Org Chem 9:111–118

    Article  CAS  Google Scholar 

  9. Dautry-Varsat A, Ciechanover A, Lodish HF (1983) Proc Natl Acad Sci USA 80:2258–2262

    Article  PubMed  CAS  Google Scholar 

  10. Harris WR, Messori L (2002) Coord Chem Rev 228:237–262

    Article  CAS  Google Scholar 

  11. Radunovic A, Ueda F, Raja KB, Simpson RJ, Templar J, King SJ, Lilley JS, Day JP, Bradbury MWB (1997) BioMetals 10:185–191

    Article  PubMed  CAS  Google Scholar 

  12. Hémadi M, Kahn PH, Miquel G, El Hage Chahine JM (2003) Biochemistry 42:3120–3130

    Article  PubMed  CAS  Google Scholar 

  13. Miquel G, Nekaa T, Kahn PH, Hémadi M, El Hage Chahine JM (2004) Biochemistry 43:14722–14731

    Article  PubMed  CAS  Google Scholar 

  14. Lawrence CM, Ray S, Babyonyshev M, Galluser R, Borhani BW, Harrison SC (1999) Science 286:779–782

    Article  PubMed  CAS  Google Scholar 

  15. Hémadi M, Kahn PH, Miquel G, El Hage Chahine JM (2004) Biochemistry 43:1736–1745

    Article  PubMed  CAS  Google Scholar 

  16. Cheng Y, Zak O, Aisen P, Harrison SC, Walz T (2004) Cell 116:565–576

    Article  PubMed  CAS  Google Scholar 

  17. Zak O, Trinder D, Aisen P (1994) J Biol Chem 269:7110–7114

    PubMed  CAS  Google Scholar 

  18. Pakdaman R, Petitjean M, El Hage Chahine JM (1998) Eur J Biochem 254:144–153

    Article  PubMed  CAS  Google Scholar 

  19. Bou Abdallah F, El Hage Chahine JM (1998) Eur J Biochem 258:1022–1031

    Article  PubMed  CAS  Google Scholar 

  20. Bernstein L (1998) Pharmacol Rev 50:665–682

    PubMed  CAS  Google Scholar 

  21. Eigen M, DeMaeyer L (1963) In: Friess SL, Lewis ES, Weissberger A (eds) Techniques of organic chemistry—investigation of rates and mechanism of reactions, part II, vol 8. Wiley-Interscience, New York, pp 895–1029

  22. Bernasconi CF (1976) Relaxation kinetics. Academic, New York

    Google Scholar 

  23. Makey DG, Seal US (1976) Biochim Biophys Acta 453:250–256

    PubMed  CAS  Google Scholar 

  24. El Hage Chahine JM, Fain D (1993) J Chem Soc Dalton Trans 3137–3143

  25. Turkewitz AP, Amatruda JF, Borhani D, Harrison SC, Schwartz AL (1988) J Biol Chem 263:8318–8325

    PubMed  CAS  Google Scholar 

  26. Bali PK, Zak O, Aisen P (1991) Biochemistry 30:324–328

    Article  PubMed  CAS  Google Scholar 

  27. Bates RG (1973) Determination of pH—theory and practice. Wiley, New York

    Google Scholar 

  28. Sun H, Cox MC, Li H, Mason AB, Woodworth RC, Sadler PJ (1998) FEBS Lett 422:315–320

    Article  PubMed  CAS  Google Scholar 

  29. Smith RMS, Martel AE (1975) Critical stability constants. Plenum, New York

    Google Scholar 

  30. Fuchs H, Gessner R, Tauber R, Ghosh R (1995) Biochemistry 34:6196–6207

    Article  PubMed  CAS  Google Scholar 

  31. Ambrosi G, Boggioni A, Formica M, Fusi V, Giorgi L, Lucarini S, Micheloni M, Secco F, Venturini M, Zappia G (2005) Dalton Trans 485–490

  32. Yamada S, Iwanaga A, Funahashi S, Tanaka M (1984) Inorg Chem 23:3528–3532

    Article  CAS  Google Scholar 

  33. Scheiner S, Duan X (1991) Biophys J 60:874–883

    Article  PubMed  CAS  Google Scholar 

  34. Wilkins RG (1976) The study of kinetics and mechanism of reactions of transition metal complexes. Allyn and Bacon, Boston

    Google Scholar 

  35. Aisen P, Leibman A, Zweier J (1978) J Biol Chem 253:1930–1937

    PubMed  CAS  Google Scholar 

  36. Hémadi M, Ha-Duong NT, El Hage Chahine JM (2006) J Mol Biol 358:1125–1136

    Article  PubMed  CAS  Google Scholar 

  37. Giannetti AM, Snow PM, Zak O, Björkman PJ (2003) PLOS Biol 1:341–350

    Article  CAS  Google Scholar 

  38. Giannetti A, Björkman PJ (2004) J Biol Chem 279:25866–25875

    Article  PubMed  CAS  Google Scholar 

  39. Sheff D, Pelletier L, O’Connell CB, Warren G, Mellman I (2002) J Cell Biol 156:797–804

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for John S. Lomas for constructive remarks and to the maternity hospital of the town of Ivry for providing the placentas.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Geneviève Miquel or Jean-Michel El Hage Chahine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chikh, Z., Ha-Duong, NT., Miquel, G. et al. Gallium uptake by transferrin and interaction with receptor 1. J Biol Inorg Chem 12, 90–100 (2007). https://doi.org/10.1007/s00775-006-0169-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0169-7

Keywords

Navigation