Skip to main content
Log in

Fast convolution with radial kernels at nonequispaced knots

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

We develop a new algorithm for the fast evaluation of linear combinations of radial functions based on the recently developed fast Fourier transform at nonequispaced knots. For smooth kernels, e.g. the Gaussian, our algorithm requires arithmetic operations. In case of singular kernels an additional regularization procedure must be incorporated and the algorithm has the arithmetic complexity if either the points y j or the points x k are “reasonably uniformly distributed”. We prove error estimates to obtain clues about the choice of the involved parameters and present numerical examples for various singular and smooth kernels in two dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MadMax Optics, FMM ToolboxTM. http://www.madmaxoptics.com, 2003

  2. Beatson, R. K., Light, W. A.: Fast evaluation of radial basis functions: methods for 2–dimensional polyharmonic splines. IMA J. Numer. Anal. 17, 343 – 372 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Beatson, R. K., Newsam, G. N.: Fast evaluation of radial basis functions: Moment based methods. SIAM J. Sci. Comput. 19, 1428 – 1449 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beylkin, G.: On the fast Fourier transform of functions with singularities. Appl. Comput. Harmon. Anal. 2, 363 – 381 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Böhme, M., Potts, D.: A fast algorithm for filtering and wavelet decomposition on the sphere. Electron. Trans. Numer. Anal. 16, 70 – 92 (2003)

    MathSciNet  Google Scholar 

  6. Broadie, M., Yamamoto, Y.: Application of the fast Gauss transform to option pricing. Management Science 49, 1071 – 1088 (2003)

    Article  Google Scholar 

  7. Cherrie, J. B., Beatson, R. K., Newsam, G. N.: Fast evaluation of radial basis functions: Methods for generalized multiquadrics in Rn. SIAM J. Sci. Comput. 23, 1549 – 1571 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duchon, J.: Fonctions splines et vecteurs aleatoires. Technical report, Seminaire d’Analyse Numerique, Universite Scientifique et Medicale, Grenoble, 1975

  9. Duijndam, A. J. W., Schonewille, M. A.: Nonuniform fast Fourier transform. Geophysics 64, 539 – 551 (1999)

    Article  Google Scholar 

  10. Dutt, A., Rokhlin, V.: Fast Fourier transforms for nonequispaced data. SIAM J. Sci. Stat. Comput. 14, 1368 – 1393 (1993)

    MATH�� Google Scholar 

  11. Elgammal, A., Duraiswami, R., Davis, L. S.: Efficient non-parametric adaptive color modeling using fast Gauss transform. Technical report, The Univ. of Maryland, 2001

  12. Fessler, J., Sutton, B.: NUFFT - nonuniform FFT toolbox for Matlab. http://www.eecs.umich.edu/fessler/code/index.html, 2002

  13. Fourmont, K.: Schnelle Fourier–Transformation bei nichtäquidistanten Gittern und tomographische Anwendungen. Dissertation, Universität Münster, 1999

  14. Frigo, M., Johnson, S. G.: FFTW, a C subroutine library. http://www.fftw.org/

  15. Goreinov, S. A., Tyrtyshnikov, E. E., Yeremin, E. E.: Matrix–free iterative solution strategies for large dense systems. Numer. Linear Algebra Appl. 4, 273 – 294 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Greengard, L.: The Rapid Evaluation of Potential Fields in Particle Systems. MIT Press, Cambridge, 1988

  17. Greengard, L., Lin, P.: Spectral approximation of the free–space heat kernel. Appl. Comput. Harmon. Anal. 9, 83 – 97 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325 – 348 (1987)

    MathSciNet  MATH  Google Scholar 

  19. Greengard, L., Strain, J.: The fast Gauss transform. SIAM J. Sci. Stat. Comput. 12, 79 – 94 (1991)

    MathSciNet  MATH  Google Scholar 

  20. Greengard, L., Sun, X.: A new version of the fast Gauss transform. Doc. Math. J. DMV 3, 575 – 584 (1998)

    Google Scholar 

  21. Hackbusch, W.: A sparse matrix arithmetic based on –matrices, Part I: introduction to –matrices. Computing 62, 89 – 108 (1999)

    Google Scholar 

  22. Hackbusch, W., Nowak, Z. P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54, 463 – 491 (1989)

    MathSciNet  MATH  Google Scholar 

  23. Kunis, S., Potts, D.: NFFT, Softwarepackage, C subroutine library. http://www.math.uni-luebeck.de/potts/nfft, 2002

  24. Potts, D., Steidl, G.: Fast summation at nonequispaced knots by NFFTs. SIAM J. Sci. Comput. 24, 2013 – 2037 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Potts, D., Steidl, G., Tasche, M.: Trigonometric preconditioners for block Toeplitz systems. In G. Nürnberger, J. W. Schmidt, and G. Walz, editors, Multivariate Approximation and Splines, pages 219 – 234, Birkhäuser, Basel, 1997

  26. Potts, D., Steidl, G., Tasche, M.: Fast Fourier transforms for nonequispaced data: A tutorial. In J. J. Benedetto and P. J. S. G. Ferreira, editors. Modern Sampling Theory: Mathematics and Applications, pages 247 – 270, Boston, 2001. Birkhäuser

  27. Steidl, G.: A note on fast Fourier transforms for nonequispaced grids. Adv. Comput. Math. 9, 337 – 353 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sun, X., Pitsianis, N. P.: A matrix version of the fast multipole method. SIAM Rev. 43, 289 – 300 (2001)

    MathSciNet  MATH  Google Scholar 

  29. Tyrtyshnikov, E. E.: Mosaic–skeleton approximations. Calcolo, 33, 47 – 57 (1996)

    Google Scholar 

  30. Yarvin, N., Rokhlin, V.: An improved fast multipole algorithm for potential fields on the line. SIAM J. Numer. Anal. 36, 629 – 666 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Steidl.

Additional information

Mathematics Subject Classification (2000): 65T40, 65T50, 65F30

Revised version received December 3, 2003

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potts, D., Steidl, G. & Nieslony, A. Fast convolution with radial kernels at nonequispaced knots. Numer. Math. 98, 329–351 (2004). https://doi.org/10.1007/s00211-004-0538-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-004-0538-5

Keywords

Navigation