Skip to main content
Log in

Effect of latent iron deficiency on metal levels of rat brain regions

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Seven different metals (iron, copper, zinc, calcium, managanese, lead, and cadmium) were studied in eight different brain regions (cerebral cortex, cerebellum, corpus striatum, hypothalamus, hippocampus, midbrain, medulla oblongata, and pons) of weaned rats (21-d-old) maintained on an iron-deficient (18–20 mg iron/kg) diet for 8 wk. Iron was found to decrease in all the brain regions, except medulla oblongata and pons, in comparison to their respective levels in control rats, receiving an iron-sufficient (390 mg iron/kg) diet. Brain regions showed different susceptibility toward iron deficiency-induced alterations in the levels of various metals, such as zinc, was found to increase in hippocampus (19%,p<0.05) and midbrain (16%,p<0.05), copper in cerebral cortex (18%,p<0.05) and corpus striatum (16%, p<0.05), calcium in corpus striatum (22%,p<0.01) and hypothalamus (17%,p<0.02), and manganese in hypothalamus (18%,p<0.05) only. Toxic metals lead and cadmium also increased in cerebellum (19%,p<0.05) and hippocampus (17%,p<0.05) regions, respectively.

Apart from these changes, liver (64%,p<0.001) and brain (19%,p<0.01) nonheme iron contents were found to decrease significantly, but body, liver, and brain weights, packed cell volume, and hemoglobin content remained unaltered in these experimental rats. Rehabilitation of iron-deficient rats with an iron-sufficient diet for 2 wk recovered the values of zinc in both the hippocampus and midbrain regions and calcium in the hypothalamus region only. Liver nonheme iron improved significantly; however, no remarkable effect was noticed in brain nonheme iron following rehabilitation. It may be concluded that latent iron deficiency produced alterations in various metal levels in different brain regions, and corpus striatum was found to be the most vulnerable region for such changes. It is also evident that brain regions were resistant for any recovery in their altered metallic levels in response to rehabilitation for 2 wk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Fielding, F. C. Path, M. C. O'Shaughnessy, and G. Brunstrom,Lancet 2, 9 (1965).

    Article  Google Scholar 

  2. T. H. Bothwell,NZ Med. J. 65, 880 (1966).

    Google Scholar 

  3. American Medical Association Council on Foods and Nutrition,J. Am. Med. Assoc. 203, 497 (1968).

    Google Scholar 

  4. P. D. Robertson, and D. W. Maclean,J. Chronic Dis. 23, 191 (1970).

    Article  PubMed  CAS  Google Scholar 

  5. M. C. Verloop,Blood 36, 657 (1970).

    PubMed  CAS  Google Scholar 

  6. E. Beutler, and R. K. Blaisdell,Blood,15 30 (1960).

    PubMed  CAS  Google Scholar 

  7. J. H. Dagg, J. H. Jackson, B. Curry, and A. Goldberg,Brit. J. Haematol. 12, 331 (1966).

    Article  CAS  Google Scholar 

  8. L. G. Macdougall, R. Anderson, G. M. McNab, and J. Katz,J. Paediatr. 86, 833 (1975).

    Article  CAS  Google Scholar 

  9. V. Taneja, K. P. Mishra, and K. N. Agarwal,J. Neurochem. 46, 1670 (1986).

    PubMed  CAS  Google Scholar 

  10. E. Pollit, and R. Leibel,J. Paediatr. 88, 372 (1976).

    Article  Google Scholar 

  11. R. L. Leibel, D. B. Greenfield, and E. Pollit,Human Nutrition: A comprehensive treatise, M. Winick, ed., Plenum, NY, 1979, pp. 383–439.

    Google Scholar 

  12. F. A. Oski, and A. S. Honig,J. Peadiatr. 92, 21 (1978).

    Article  CAS  Google Scholar 

  13. F. A. Oski, A. S. Honig, and B. M. Helu,Pead. Res. 15, 583 (1981).

    Article  Google Scholar 

  14. M. B. H. Youdim, and A. R. Green,Iron Metabolism CIBA Foundation Symposium, Elsevier, Amsterdam, 1977, pp. 201–225.

    Book  Google Scholar 

  15. B. Mackler, R. Person, L. R. Miller, A. R. Inamdar, and C. A. Finch,Paediatr. Res. 12, 217 (1978).

    Article  CAS  Google Scholar 

  16. J. Donaldson, T. Cloutier, J. L. Minnich, and A. Barbeau,Advances in Neurology, F. H. McDowell and A. Barbeau, eds., Raven, New York, NY, 1974, pp. 245–252.

    Google Scholar 

  17. J. Donaldson,TIPS 2, 75 (1981)

    CAS  Google Scholar 

  18. G. S. Shukla, and S. V. Chandra,Arch. Toxicol. 47, 191 (1981a).

    Article  PubMed  CAS  Google Scholar 

  19. R. B. Hubbel, K. B. Mendal, and A. J. Wakeman,J. Nutr. 14, 273 (1937).

    Google Scholar 

  20. R. B. Williams, and C. F. Mills,J. Nutr. 24, 989 (1970).

    Article  CAS  Google Scholar 

  21. AOAC,Official Methods of Analysis of The Association of Official Analytical Chemists, W. Horwitz, ed., P. Chichilo and H. Reynolds, associate eds., Washington (1970).

  22. J. Glowinski, and I. L. Iversen,J. Neurochem. 13, 655 (1966).

    Article  PubMed  CAS  Google Scholar 

  23. E. Berman,Toxic Metals and Their Analysis, Heyden, London, 1980.

    Google Scholar 

  24. G. M. Crosby, and V. E. Siler,J. Lab. Clin. Nutr. 42, 263 (1934).

    Google Scholar 

  25. W. H. Crosby, and D. N. Houchin,Blood 12, 1132 (1957).

    PubMed  CAS  Google Scholar 

  26. B. Hallgren,Acta Soc. Med. 59, 79 (1953).

    CAS  Google Scholar 

  27. W. C. Schneider,Methods in Enzymology, S. P. Colowick and N. O. Kaplan, eds., Academic, New York, NY 1981, pp. 680–684.

    Google Scholar 

  28. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall,J. Biol. Chem. 193, 265 (1951).

    PubMed  CAS  Google Scholar 

  29. W. O. Caster, and J. M. Doster,Internat. J. Vit. Nutr. Res. 49, 215 (1979).

    CAS  Google Scholar 

  30. M. A. Siimes, C. Refino, and P. R. Dallman,Am. J. Clin. Nutr. 33, 570 (1980).

    PubMed  CAS  Google Scholar 

  31. P. R. Dallman,Semin. Hematol. 19, 19 (1982).

    PubMed  CAS  Google Scholar 

  32. M. B. H. Youdim, A. R. Green, and M. R. Bloomfield,Neuropharmacol. 19, 259 (1980).

    Article  CAS  Google Scholar 

  33. P. R. Dallman, and R. A. Spirito,J. Nutr. 107, 1075 (1977).

    PubMed  CAS  Google Scholar 

  34. S. Pollack, J. N. George, R. C. Reba, R. M. Kaufman, and W. A. Crosby,J. Clin. Invest. 44, 1470 (1965).

    Article  PubMed  CAS  Google Scholar 

  35. K. M. Six, and R. A. Goyer,J. Lab. Clin. Med. 70, 128 (1972).

    Google Scholar 

  36. T. L. Sourkes, K. Lloyd, and H. Birnbaum,Biochem. 46, 267 (1968).

    CAS  Google Scholar 

  37. N. L. Cohen, C. L. Keen, B. O. Lonnerdal, and L. S. Hurley,J. Nutr. 115, 633 (1985).

    PubMed  CAS  Google Scholar 

  38. C. J. Hahn, and G. W. Evans,Am. J. Physiol. 228, 1020 (1975).

    PubMed  CAS  Google Scholar 

  39. R. M. Jacobs, M. R. S. Fox, and M. H. Aldridge,J. Nutr. 99, 119 (1969).

    PubMed  CAS  Google Scholar 

  40. T. C. Siewicki, J. S. Sydlowski, F. M. V. Dolah, and J. E. Balthrope, Jr,J. Nutr. 116, 281 (1986).

    PubMed  CAS  Google Scholar 

  41. W. J. Niklowitz, and D. W. Yeager,Life Sci. 13, 897 (1973).

    Article  PubMed  CAS  Google Scholar 

  42. M. Diez-Ewald, L. R. Weintraub, and W. H. Crosby,Proc. Soc. Exp. Biol. Med. 129, 448 (1968).

    PubMed  CAS  Google Scholar 

  43. A. Ehrenberg and C.-B. Laurell,Acta Chem. Scand. 9, 68 (1955).

    Article  CAS  Google Scholar 

  44. R. Aasa, B. G. Malmstrom, P. Saltman, and T. Vanngard,Biochem. Biophys. Acta 75, 203 (1963).

    Article  PubMed  CAS  Google Scholar 

  45. J. Fletcher, and E. R. Huehns,Nature (London)215, 584 (1967).

    Article  CAS  Google Scholar 

  46. G. Marzullo, and B. Hine,Science 208, 1171 (1980).

    Article  PubMed  CAS  Google Scholar 

  47. G. S. Shukla, and S. V. Chandra,Toxicol. Lett. 10, 163 (1981).

    Article  Google Scholar 

  48. C. K. Lai, T. K. C. Leung, J. F. Guest, A. N. Davidson, and L. Lim,J. Neurochem. 38, 844 (1982).

    Article  PubMed  CAS  Google Scholar 

  49. S. Govoni, M. Memo, L. Lucchi, P. F. Spano, and M. Trabucchi,Pharmacol. Res. Commun. 12, 447 (1980).

    Article  PubMed  CAS  Google Scholar 

  50. G. S. Shukla, and R. L. Singhal,Can. J. Physiol. Pharmacol. 62, 1015 (1984).

    PubMed  CAS  Google Scholar 

  51. B. Zivkovic, A. Guidotti, and E. Costa,Mol. Pharmacol. 10, 727 (1974).

    CAS  Google Scholar 

  52. L. C. Wince, C. A. Donovan, and A. J. Azaro,J. Pharmacol. Exp. Ther. 214, 642 (1980).

    PubMed  CAS  Google Scholar 

  53. S. J. Kopp, H. M. Perry Jr., E. F. Perry, and M. Erlanger,Toxicol. Appl. Pharmacol. 69, 149 (1983).

    Article  PubMed  CAS  Google Scholar 

  54. G. S. Shukla, and S. V. Chandra,Arch. Environ. Contam. Toxicol. 16, 303 (1987).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, A., Agarwal, K.N. & Shukla, G.S. Effect of latent iron deficiency on metal levels of rat brain regions. Biol Trace Elem Res 22, 141–152 (1989). https://doi.org/10.1007/BF02916645

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02916645

Index Entries

Navigation