Skip to main content

Validation by Abstraction and Refinement

  • Conference paper
  • First Online:
Rigorous State-Based Methods (ABZ 2023)

Abstract

While refinement can help structure the modeling and proving process, it also forces the modeler to introduce features in a particular order. This means that features deeper in the refinement chain cannot be validated in isolation, making some reasoning unnecessarily intricate. In this paper, we present the AVoiR (Abstraction-Validation Obligation-Refinement) framework to ease validation of such complex refinement chains. The triptych AVoiR framework operates as follows: 1) We first simplify a complex model by abstracting away the noise, i.e., removing the information unrelated to properties under analysis. 2) Using the Validation Obligations (VOs) technique, we formalize the validation tasks of the desired property. 3) Finally, we trickle down the validation results by establishing the noiseless model as a parent of the initially investigated model through the standard refinement relationship. Furthermore, by using the technique of VO refinement, we establish the VOs of the abstract model on the initial model. We use a case study from the aviation domain to show the proposed framework’s effectiveness.

The research presented in this paper has been conducted within the IVOIRE project, which is funded by “Deutsche Forschungsgemeinschaft” (DFG) and the Austrian Science Fund (FWF) grant # I 4744-N. The work of Sebastian Stock and Atif Mashkoor and Alexander Egyed has been partly funded by the LIT Secure and Correct Systems Lab sponsored by the province of Upper Austria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 64.99
Price excludes VAT (USA)
Softcover Book
USD 84.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Original case study code: https://github.com/hhu-stups/AMAN-case-study/.

  2. 2.

    Code for this paper: https://github.com/hhu-stups/AMAN-abstraction-example.

  3. 3.

    The whole example is available under https://figshare.com/articles/code/Abstraction_Examples/19786924/3.

  4. 4.

    For full details, we refer to the files.

References

  1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  2. Abrial, J.R., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Technol. Transf. 12(6), 447–466 (2010). https://doi.org/10.1007/s10009-010-0145-y

    Article  Google Scholar 

  3. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation of discrete models: application to Event-B. Fund. Inform. 77(1–2), 1–28 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Banach, R.: Graded refinement, retrenchment and simulation. ACM Trans. Softw. Eng. Methodol. (2022). https://doi.org/10.1145/3534116

  5. Banach, R., Fraser, S.: Retrenchment and the B-Toolkit. In: Treharne, H., King, S., Henson, M., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 203–221. Springer, Heidelberg (2005). https://doi.org/10.1007/11415787_13

    Chapter  Google Scholar 

  6. Bert, D., Potet, M.-L., Stouls, N.: GeneSyst: a tool to reason about behavioral aspects of B event specifications. application to security properties. In: Treharne, H., King, S., Henson, M., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 299–318. Springer, Heidelberg (2005). https://doi.org/10.1007/11415787_18

    Chapter  MATH  Google Scholar 

  7. Bertolino, A., Inverardi, P., Muccini, H.: Formal methods in testing software architectures. In: Bernardo, M., Inverardi, P. (eds.) SFM 2003. LNCS, vol. 2804, pp. 122–147. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39800-4_7

    Chapter  Google Scholar 

  8. Bianchi, A., Pizzutilo, S., Vessio, G.: Applying predicate abstraction to abstract state machines. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q. (eds.) CAISE 2015. LNBIP, vol. 214, pp. 283–292. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19237-6_18

    Chapter  Google Scholar 

  9. Börger, E.: The abstract state machines method for high-level system design and analysis. In: Boca, P., Bowen, J., Siddiqi, J. (eds.) Formal Methods: State of the Art and New Directions, pp. 79–116. Springer, London (2010). https://doi.org/10.1007/978-1-84882-736-3_3

  10. Butler, M.: Decomposition structures for Event-B. In: Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 20–38. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00255-7_2

    Chapter  Google Scholar 

  11. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. J. ACM (JACM) 50(5), 752–794 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction of approximation of fixed points. In: Proceedings POPL, pp. 238–252. ACM (1977)

    Google Scholar 

  13. Dobrikov, I., Leuschel, M.: Enabling analysis for Event-B. In: Science of Computer Programming, vol. 158, pp. 81–99. Elsevier (2018)

    Google Scholar 

  14. Fraser, S., Banach, R.: Configurable proof obligations in the frog toolkit. In: Proceedings SEFM, pp. 361–370. IEEE Computer Society (2007). https://doi.org/10.1109/SEFM.2007.12

  15. Geleßus, D., Stock, S., Vu, F., Leuschel, M., Mashkoor, A.: Modeling and analysis of a safety-critical interactive system through validation obligations. In: Proceedings ABZ (2023)

    Google Scholar 

  16. Hoang, T.S., Schneider, S., Treharne, H., Williams, D.M.: Foundations for using linear temporal logic in Event-B refinement. Formal Aspects Comput. 28(6), 909–935 (2016). https://doi.org/10.1007/s00165-016-0376-0

    Article  MathSciNet  MATH  Google Scholar 

  17. Hoang, T.S., Snook, C., Dghaym, D., Fathabadi, A.S., Butler, M.: Building an extensible textual framework for the Rodin platform. In: Masci, P., Bernardeschi, C., Graziani, P., Koddenbrock, M., Palmieri, M. (eds.) Software Engineering and Formal Methods. SEFM 2022 Collocated Workshops. LNCS, vol. 13765, pp. 132–147. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-26236-4_11

  18. Institute of Electrical and Electronics Engineers: IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries. IEEE (1991). https://doi.org/10.1109/IEEESTD.1991.106963

  19. Ladenberger, L., Leuschel, M.: Mastering the visualization of larger state spaces with projection diagrams. In: Butler, M., Conchon, S., Zaïdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 153–169. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25423-4_10

    Chapter  Google Scholar 

  20. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley, Boston (2002)

    Google Scholar 

  21. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45236-2_46

    Chapter  Google Scholar 

  22. Mashkoor, A., Kossak, F., Egyed, A.: Evaluating the suitability of state-based formal methods for industrial deployment. Softw. Pract. Exp. 48(12), 2350–2379 (2018). https://doi.org/10.1002/spe.2634

    Article  Google Scholar 

  23. Mashkoor, A., Leuschel, M., Egyed, A.: Validation obligations: a novel approach to check compliance between requirements and their formal specification. In: ICSE2021 NIER, pp. 1–5 (2021)

    Google Scholar 

  24. Palanque, P., Campos, J.C.: Aman case study (2022). https://drive.google.com/file/d/1IqftxQIvrWpX1lcRts3WJzrBH7a3dMln/view

  25. Punnoose, R.J., Armstrong, R.C., Wong, M.H., Jackson, M.: Survey of existing tools for formal verification. Technical report, Sandia National Lab. (SNL-CA), Livermore, CA (United States) (2014). https://doi.org/10.2172/1166644

  26. Schneider, S., Treharne, H., Wehrheim, H., Williams, D.M.: Managing LTL properties in Event-B refinement. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS, vol. 8739, pp. 221–237. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10181-1_14

    Chapter  Google Scholar 

  27. Stock, S., Mashkoor, A., Leuschel, M., Egyed, A.: Trace refinement in B and Event-B. In: Riesco, A., Zhang, M. (eds.) Formal Methods and Software Engineering. ICFEM 2022. Lecture Notes in Computer Science, vol. 13478, pp. 316–333. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17244-1_19

  28. Stock, S., Vu, F., Mashkoor, A., Leuschel, M., Egyed, A.: IVOIRE Deliverable 1.1: Classification of existing VOs & tools and Formalization of VOs semantics. arXiv preprint: arXiv:2205.06138 (2022)

  29. Vu, F., Leuschel, M., Mashkoor, A.: Validation of formal models by timed probabilistic simulation. In: Raschke, A., Méry, D. (eds.) ABZ 2021. LNCS, vol. 12709, pp. 81–96. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77543-8_6

    Chapter  Google Scholar 

  30. Yeganefard, S., Butler, M., Rezazadeh, A.: Evaluation of a guideline by formal modelling of cruise control system in Event-B. In: Proceedings NFM, pp. 182–191 (2010)

    Google Scholar 

  31. Zhu, C., Butler, M., Cirstea, C., Hoang, T.S.: A fairness-based refinement strategy to transform liveness properties in Event-B models. Sci. Comput. Program. 225, 102907 (2023). https://doi.org/10.1016/j.scico.2022.102907, https://www.sciencedirect.com/science/article/pii/S016764232200140X

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Stock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stock, S., Vu, F., Geleßus, D., Leuschel, M., Mashkoor, A., Egyed, A. (2023). Validation by Abstraction and Refinement. In: Glässer, U., Creissac Campos, J., Méry, D., Palanque, P. (eds) Rigorous State-Based Methods. ABZ 2023. Lecture Notes in Computer Science, vol 14010. Springer, Cham. https://doi.org/10.1007/978-3-031-33163-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33163-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33162-6

  • Online ISBN: 978-3-031-33163-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics