Skip to main content

Weak Pseudoprimality Associated with the Generalized Lucas Sequences

  • Chapter
  • First Online:
Approximation and Computation in Science and Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 180))

Abstract

Pseudoprimes are composite integers which share properties of the prime numbers, and they have applications in many areas, as, for example, in public-key cryptography. Numerous types of pseudoprimes are known to exist, many of them defined by linear recurrent sequences. In this material, we present some novel classes of pseudoprimes related to the generalized Lucas sequences. First, we present some arithmetic properties of the generalized Lucas and Pell–Lucas sequences and review some classical pseudoprimality notions defined for Fibonacci, Lucas, Pell, and Pell–Lucas sequences and their generalizations. Then we define new notions of pseudoprimality which do not involve the use of the Jacobi symbol and include many classical pseudoprimes. For these, we present associated integer sequences recently added to the Online Encyclopedia of Integer Sequences, identify some key properties, and propose a few conjectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 109.00
Price excludes VAT (USA)
Softcover Book
USD 139.99
Price excludes VAT (USA)
Hardcover Book
USD 139.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Andreescu, D. Andrica, Number Theory. Structures, Examples, and Problems (Birkhäuser, Boston, 2009)

    Google Scholar 

  2. D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems (Springer, Berlin, 2020)

    Book  MATH  Google Scholar 

  3. D. Andrica, O. Bagdasar, On some arithmetic properties of the generalized Lucas sequences. Mediter. J. Math. 18, 1–15 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Andrica, O. Bagdasar, On generalized Lucas pseudoprimality of levelk. Mathematics 9(8), 838 (2021)

    Google Scholar 

  5. D. Andrica, O. Bagdasar, On some pseudoprimality results related to the generalized Lucas sequences. Math. Comput. Simul. (2021). https://doi.org/10.1016/j.matcom.2021.03.003

  6. D. Andrica, V. Crişan, F. Al-Thukair, On Fibonacci and Lucas sequences modulo a prime and primality testing. Arab J. Math. Sci., 24, 9–15 (2018)

    MathSciNet  MATH  Google Scholar 

  7. D. Andrica, O. Bagdasar, G.C. Ţurcaş, On some new results for the generalized Lucas sequences. An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. XXIX(1), 17–36 (2021)

    Google Scholar 

  8. R. Baillie, S.S. Wagstaff, Lucas pseudoprimes. Math. Comput. 35, 1391–1417 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Brillhart, D.H. Lehmer, J.L. Selfridge, New primality criteria and factorizations of 2m ± 1. Math. Comput. 29, 620–647 (1975)

    MATH  Google Scholar 

  10. P.S. Bruckman, On the infinitude of Lucas pseudoprimes. Fibonacci Quart. 32, 153–154 (1994)

    MathSciNet  MATH  Google Scholar 

  11. P.S. Bruckman, Lucas pseudoprimes are odd. Fibonacci Quart. 32, 155–157 (1994)

    MathSciNet  MATH  Google Scholar 

  12. Z. Čerin, G.M. Gianella, On sums of Pell numbers. Acc. Sc. Torino - Atti Sci. Fis. 141, 23–31 (2007)

    MathSciNet  Google Scholar 

  13. K.-W. Chen, Y.-R. Pan, Greatest common divisors of shifted Horadam sequences. J. Integer Sequences 23 (2020). Article 20.5.8.

  14. R. Crandall, C. Pomerance, Prime Numbers: A Computational Perspective, 2nd edn. (Springer, Berlin, 2005)

    MATH  Google Scholar 

  15. G. Everest, A. van der Poorten, I. Shparlinski, T. Ward, Recurrence Sequences. Mathematical Surveys and Monographs, vol. 104 (American Mathematical Society, Providence, 2003)

    Google Scholar 

  16. J. Grantham, Frobenius pseudoprimes. Math. Comput. 70, 873–891 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Kiss, B.M. Phong, E. Lieuwens, On Lucas pseudoprimes which are products of s primes, in Fibonacci Numbers and Their Applications, ed. by A.N. Philippou, G.E. Bergum, A.F. Horadam, vol. 1 (Dordrecht, Reidel, 1986), pp. 131–139

    Google Scholar 

  18. E. Lehmer, On the infinitude of Fibonacci pseudoprimes. Fibonacci Quart. 2, 229–230 (1964)

    MATH  Google Scholar 

  19. P. Mihăilescu, M.T. Rassias, Public key cryptography, number theory and applications. EMS Newslett. 86, 25–30 (2012)

    MathSciNet  MATH  Google Scholar 

  20. P. Mihăilescu, M.T. Rassias, Computational Number Theory and Cryptography. Applications of Mathematics and Informatics in Science and Engineering (Wiley, Hoboken, 2014), pp. 349–373

    Google Scholar 

  21. P. Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory (Springer, Berlin, 2000)

    Book  MATH  Google Scholar 

  22. P. Ribenboim, The Little Book of Bigger Primes, 2nd edn. (Springer, Berlin, 2004)

    MATH  Google Scholar 

  23. A. Rotkiewicz, On the pseudoprimes with respect to the Lucas sequences. Bull. Acad. Polon. Sci. Sr. Sci. Math. Astronom. Phys. 21, 793–797 (1973)

    MathSciNet  MATH  Google Scholar 

  24. A. Rotkiewicz, Lucas and Frobenius pseudoprimes. Ann. Math. Sil. 17, 17–39 (2003)

    MathSciNet  MATH  Google Scholar 

  25. S. Schuster, M. Fitchner, S. Sasso, Use of Fibonacci numbers in lipidomics - Enumerating various classes of fatty acids. Nat. Sci. Rep. 7, 39821 (2017). Article 39821

  26. N.J.A. Sloane, The on-line encyclopedia of integer sequences. https://oeis.org

  27. B. Tams, T.M. Rassias, P. Mihăilescu, Current challenges for IT security with focus on Biometry, in Computation, Cryptography, and Network Security (Springer, New York, 2015), pp. 461–491

    MATH  Google Scholar 

  28. H.C. Williams, Edouard Lucas and Primality Testing (Wiley-Blackwell, Hoboken, 2011)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers from the Online Encyclopedia of Integer Sequences for thoroughly checking, editing, reviewing, and finally approving the numerous new integer sequences introduced in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Th. Rassias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andrica, D., Bagdasar, O., Rassias, M.T. (2022). Weak Pseudoprimality Associated with the Generalized Lucas Sequences. In: Daras, N.J., Rassias, T.M. (eds) Approximation and Computation in Science and Engineering. Springer Optimization and Its Applications, vol 180. Springer, Cham. https://doi.org/10.1007/978-3-030-84122-5_4

Download citation

Publish with us

Policies and ethics