Skip to main content

Variational Dense Motion Estimation Using the Helmholtz Decomposition

  • Conference paper
  • First Online:
Scale Space Methods in Computer Vision (Scale-Space 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2695))

Included in the following conference series:

Abstract

We present a novel variational approach to dense motion estimation of highly non-rigid structures in image sequences. Our representation of the motion vector field is based on the extended Helmholtz Decomposition into its principal constituents: The laminar flow and two potential functions related to the solenoidal and irrotational flow, respectively. The potential functions, which are of primary interest for flow pattern analysis in numerous application fields like remote sensing or fluid mechanics, are directly estimated from image sequences with a variational approach. We use regularizers with derivatives up to third order to obtain unbiased high-quality solutions. Computationally, the approach is made tractable by means of auxiliary variables. The performance of the approach is demonstrated with ground-truth experiments and real-world data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 39.99
Price excludes VAT (USA)
Softcover Book
USD 54.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Adrian. Particle imaging techniques for experimental fluid mechanics. Annal Rev. Fluid Mech., 23:261–304, 1991.

    Article�� Google Scholar 

  2. A. Amini. A scalar function formulation for optical flow. In Proc. Europ. Conf. Computer Vision, pages 125–131, 1994.

    Google Scholar 

  3. L. Bannehr, R. Rohn, and G. Warnecke. A functionnal analytic method to derive displacement vector fields from satellite image sequences. Int. Journ. of Remote Sensing, 17(2):383–392, 1996.

    Article  Google Scholar 

  4. T. Corpetti, E. Mémin, and P. Pérez. Dense estimation of fluid flows. IEEE Trans. Pattern Anal. Machine Intell., 24(3):365–380, 2002.

    Article  Google Scholar 

  5. T. Corpetti, E. Mémin, and P. Pérez. Dense motion analysis in fluid imagery. In European Conference on Computer Vision, ECCV’02, pages 676–691, 2002.

    Google Scholar 

  6. S. Das Peddada and R. McDevitt. Least average residual algorithm (LARA) for tracking the motion of arctic sea ice. IEEE trans. on Geoscience and Remote sensing, 34(4):915–926, 1996.

    Article  Google Scholar 

  7. J.M. Fitzpatrick and C.A. Pederson. A method for calculating fluid flow in time dependant density images. Electronic Imaging, 1:347–352, 1988.

    Google Scholar 

  8. W. Hackbusch. Theorie und Numerik elliptischer Differentialgleichungen. B.G. Teubner, Stuttgart, 1986.

    MATH  Google Scholar 

  9. B. Horn and B. Schunck. Determining optical flow. Artificial Intelligence, 17:185–203, 1981.

    Article  Google Scholar 

  10. D. J. Fleet J. L. Barron and S. S. Beauchemin. Perfomance of optical flow techniques. Int. J. Computer Vision, 1994.

    Google Scholar 

  11. R. Larsen, K. Conradsen, and B.K. Ersboll. Estimation of dense image flow fields in fluids. IEEE trans. on Geoscience and Remote sensing, 36(1):256–264, 1998.

    Article  Google Scholar 

  12. S.P. McKenna and W.R. McGillis. Performance of digital image velocimetry processing techniques. Experiments in Fluids, 32:106–115, 2002.

    Article  Google Scholar 

  13. A. Ottenbacher, M. Tomasini, K. Holmlund, and J. Schmetz. Low-level cloud motion winds from Meteosat high-resolution visible imagery. Weather and Forecasting, 12(1):175–184, 1997.

    Article  Google Scholar 

  14. C. Schnörr. Segmentation of visual motion by minimizing convex non-quadratic functionals. In 12th Int. Conf. on Pattern Recognition, Jerusalem, Israel, Oct 9–13 1994.

    Google Scholar 

  15. C. Schnörr, R. Sprengel, and B. Neumann. A variational approach to the design of early vision algorithms. Computing Suppl., 11:149–165, 1996.

    Google Scholar 

  16. J. Shukla and R. Saha. Computation of non-divergent streamfunction and irrotational velocity potential from the observed winds. Monthly weather review, 102:419–425, 1974.

    Article  Google Scholar 

  17. J. Simpson and J. Gobat. Robust velocity estimates, stream functions, and simulated Lagrangian drifters from sequential spacecraft data. IEEE trans. on Geosciences and Remote sensing, 32(3):479–492, 1994.

    Article  Google Scholar 

  18. S.M. Song and R.M. Leahy. Computation of 3D velocity fields from 3D cine and CT images of human heart. IEEE trans. on medical imaging, 10(3):295–306, 1991.

    Article  Google Scholar 

  19. D. Suter. Motion estimation and vector splines. In Proc. Conf. Comp. Vision Pattern Rec., 1994.

    Google Scholar 

  20. J. Weickert and C. Schnörr. A theoretical framework for convex regularizers in pde-based computation of image motion. Int. J. Computer Vision, 45(3):245–264, 2001.

    Article  MATH  Google Scholar 

  21. L. Zhou, C. Kambhamettu, and D. Goldgof. Fluid structure and motion analysis from multi-spectrum 2D cloud images sequences. In Proc. Conf. Comp. Vision Pattern Rec., volume 2, pages 744–751, Hilton Head Island, South Carolina, USA, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kohlberger, T., Mémin, É., Schnörr, C. (2003). Variational Dense Motion Estimation Using the Helmholtz Decomposition. In: Griffin, L.D., Lillholm, M. (eds) Scale Space Methods in Computer Vision. Scale-Space 2003. Lecture Notes in Computer Science, vol 2695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44935-3_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-44935-3_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40368-5

  • Online ISBN: 978-3-540-44935-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics